Buoyancy from water. Buoyancy is an upward force on an object immersed in a fluid (i.e., a liquid or a gas), enabling it to float or at least to appear lighter.
Answer:
Acceleration
Explanation:
I think so & hope it will help yuh!
Answer:
v = 0.059 m/s
Explanation:
To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:
(1)
m: mass of the ball = 0.400kg
M: mass of Olaf = 75.0 kg
v1i: initial velocity of the ball = 11.3m/s
v2i: initial velocity of Olaf = 0m/s
v: final velocity of Olaf and the ball
You solve the equation (1) for v and replace the values of all variables:

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s
Answer:
The solution is attached in the pictures below
Explanation:
Answer:
The frequency is the same
Explanation:
When a wave is created by a source which is vibrating at a certain frequency, the frequency of the wave itself is equal to the frequency of the source.
This occurs with every kind of wave. For instance, if we consider the radio waves produced by an antenna, the frequency of the radio waves is equal to the frequency of the antenna.
In this case, the waves are created by the vibrating bug. The bug is vibrating with a certain frequency
: as a consequence, the frequency
of the waves produced by the bug will be equal to the frequency of vibration of the bug:
.