1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisabon 2012 [21]
3 years ago
15

003 (part 1 of 2) 10.0 points

Physics
1 answer:
drek231 [11]3 years ago
4 0
Theists. You’re welcome
You might be interested in
There are two parallel conductive plates separated by a distance d and zero potential. Calculate the potential and electric fiel
taurus [48]

Answer:

The total electric potential at mid way due to 'q' is \frac{q}{4\pi\epsilon_{o}d}

The net Electric field at midway due to 'q' is 0.

Solution:

According to the question, the separation between two parallel plates, plate A and plate B (say)  = d

The electric potential at a distance d due to 'Q' is:

V = \frac{1}{4\pi\epsilon_{o}}.\frac{Q}{d}

Now, for the Electric potential for the two plates A and B at midway between the plates due to 'q':

For plate A,

V_{A} = \frac{1}{4\pi\epsilon_{o}}.\frac{q}{\frac{d}{2}}

Similar is the case with plate B:

V_{B} = \frac{1}{4\pi\epsilon_{o}}.\frac{q}{\frac{d}{2}}

Since the electric potential is a scalar quantity, the net or total potential is given as the sum of the potential for the two plates:

V_{total} = V_{A} + V_{B} = \frac{1}{4\pi\epsilon_{o}}.q(\frac{1}{\frac{d}{2}} + \frac{1}{\frac{d}{2}}

V_{total} = \frac{q}{4\pi\epsilon_{o}d}

Now,

The Electric field due to charge Q at a distance is given by:

\vec{E} = \frac{1}{4\pi\epsilon_{o}}.\frac{Q}{d^{2}}

Now, if the charge q is mid way between the field, then distance is \frac{d}{2}.

Electric Field at plate A, \vec{E_{A}} at midway due to charge q:

\vec{E_{A}} = \frac{1}{4\pi\epsilon_{o}}.\frac{q}{(\frac{d}{2})^{2}}

Similarly, for plate B:

\vec{E_{B}} = \frac{1}{4\pi\epsilon_{o}}.\frac{q}{(\frac{d}{2})^{2}}

Both the fields for plate A and B are due to charge 'q' and as such will be equal in magnitude with direction of fields opposite to each other and hence cancels out making net Electric field zero.

3 0
3 years ago
Calculate the total displacement of a mouse walking along a ruler, if it begins at the x=5cm, and then does the following: It wa
Lana71 [14]
<span>To begin, the mouse walks from 5 to 12 cm, for a displacement of 7 cm. Next, it walks 8 cm in the opposite direction, for a total displacement of (7 + [-8]) or (-1) cm. This leaves the mouse on 4 cm, and then it walks from there to the 7cm location, for a displacement of 7-4 or +3 cm. Adding 3cm to -1cm gives a final displacement of +2cm.</span>
6 0
4 years ago
Suppose you had used a less sensitive balance for the Archimedes method of getting volume of an object based on the difference i
alisha [4.7K]
<span>If you think about it, changing the scale to which something is measured does not affect the repeatability of the measurement. For instance, if you have a meter stick which was labeled incorrectly, that doesn't affect the fact that every measurement you take of a certain fixed distance will still be the same. Precision does not equal accuracy.</span>
8 0
3 years ago
Read 2 more answers
An amusement park ride consists of a rotating circular platform 11.1 m in diameter from which 10 kg seats are suspended at the e
frozen [14]

To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.

The tension in the vertical plane will be equivalent to the centripetal force therefore

Tsin\theta= \frac{mv^2}{r}

Here,

m = mass

v = Velocity

r = Radius

The tension in the horizontal plane will be subject to the action of the weight, therefore

Tcos\theta = mg

Matching both expressions with respect to the tension we will have to

T = \frac{\frac{mv^2}{r}}{sin\theta}

T = \frac{mg}{cos\theta}

Then we have that,

\frac{\frac{mv^2}{r}}{sin\theta} =  \frac{mg}{cos\theta}

\frac{mv^2}{r} = mg tan\theta

Rearranging to find the velocity we have that

v = \sqrt{grTan\theta}

The value of the angle is 14.5°, the acceleration  (g) is 9.8m/s^2 and the radius is

r = \frac{\text{diameter of rotational circular platform}}{2} + \text{length of chains}

r = \frac{11.1}{2}+2.41

r = 7.96m

Replacing we have that

v = \sqrt{(9.8)(7.96)tan(14.5\°)}

v = 4.492m/s

Therefore the speed of each seat is 4.492m/s

6 0
3 years ago
Which activity demonstrates the lowest level of intensity? sprinting to catch a bus lying on the couch playing video games walki
Olegator [25]
<span>lying on the couch


:)

</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is not sublimable? *
    13·1 answer
  • The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change?
    14·1 answer
  • The height of the tide measured at a seaside community varies according to the number of hours t after midnight. If the height h
    10·1 answer
  • Which of the following statements is/are true?Check all that apply.a. A conservative force permits a two-way conversion between
    6·1 answer
  • A metal object is suspended from a spring scale. The scale reads 920 N when the object is suspended in air, and 750N when the ob
    6·1 answer
  • Disease, pathogen , host and infectious in a sentence
    10·1 answer
  • Takes 5 seconds and 2,000 J for a crane to lift a very heavy object. Which of these correctly describes power and energy for thi
    15·1 answer
  • On Earth, the gravitational field strength is 10 N/kg. Calculate E for a 4 kg bowling ball that is being
    12·1 answer
  • How many 60-watt lamps could be connected in parallel on a 15-amp, 120-volt circuit without exceeding 80% of the rating of the c
    9·1 answer
  • What is the acceleration of a 100 kg object pushed by Beau with a force of 500 N? Write out your equation.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!