Answer:
0.48 m
Explanation:
I'm assuming that this takes place in an ideal situation, where we neglect a host of factors such as friction, weight of the spring and others
If the mass is hanging from equilibrium at 0.42 m above the floor, from the question, and it is then pulled 0.06 m below that particular position. This pulling is a means of adding more energy into the spring, when it is released, the weight compresses the spring and equals its distance (i.e, 0.06 m) above the height.
0.42 m + 0.06 m = 0.48 m
At the highest point thus, the height is 0.48 m above the ground.
These answers are very good. I made a 95% by using this as my answer key, but unfortunately, one of these is wrong. I don't know which one, all I know is that I got 19/20. Just wanted to throw that out there. :-) Good job, Sadaqasalaam3. And thank you.
Total distance = 10 km + 10 km = 20 km
1 km = 1000 m
20km x 1000 = 20,000 m
Total time = 20 min. + 30 min. = 50 minutes
Average speed = Distance / time
Average speed = 20,000/50 min
Average speed = 400 m/s
Answer:
34.62m/s^2
Explanation:
Force = mass x acceleration
Given
Force = 1800N
Mass = 52kg
Therefore
1800 = 52 x a
Divide both sides by 52
1800/52 = 52/52 x a
34.62 = a
a = 34.62m/s^2
Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A. ... In reaction, a thrusting force is produced in the opposite direction.
Explanation: