The final volume of the gas is 144.25 L
Explanation:
For an ideal gas kept at constant pressure, the work done by the gas on the surroundings is given by

where
p is the pressure of the gas
is the initial volume
is the final volume
For the gas in the cylinder in this problem,
p = 2.00 atm

And we also know the work done,
W = 288 J
So we can solve the equation for
, the final volume:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
The pendulum of the clock.
Explanation:
Hi there!
The kinetic energy is the energy associated with the velocity of the object. The potential energy is the energy associated with the position of the object. In the objects listed in the question, only one object is moving: the pendulum of the clock (assuming that the clock is functioning). If the clock functions, the pendulum is moving when it is at the lowest point of its arc of motion and with maximum velocity. All potential energy that the pendulum stored when it reached the highest height, is transformed into kinetic energy at the lowest point. Thus, at that point, the object has more kinetic energy than potential energy.
Answer:
It is impossible to detect underground water from the surface. Dowsing practitioners refuse to explain their secrets.
Explanation:
Answer:
4400 Joules
73.33 Joules
25.9325 Joules
Explanation:
P = Power = 800 W
t = Time = 22 s
F = Force
r = Radius of arm = 90 cm
Energy

As the efficiency is 25%

Energy used in the race is 4400 Joules
Half of the energy is used in the arm

So, per stroke of paddle

The energy expenditure per arm stroke is 73.33 Joules
Displacement will be the half of the perimeter of the circle

Work done

The average force of the hand on the water is 25.9325 Joules
The work required to stop the car is equal to the amount of kinetic energy that the car currently has. This is given by E=(1/2)mv^2. Since the energy is proportional to the square of the velocity, that factor will have the greatest influence on the work required to stop it.