Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 =
Answer:
A) T1 = 269.63 K
T2 = 192.59 K
B) W = -320 KJ
Explanation:
We are given;
Initial volume: V1 = 7 m³
Final Volume; V2 = 5 m³
Constant Pressure; P = 160 KPa
Mass; m = 2 kg
To find the initial and final temperatures, we will use the ideal gas formula;
T = PV/mR
Where R is gas constant of helium = R = 2.0769 kPa.m/kg
Thus;
Initial temperature; T1 = (160 × 7)/(2 × 2.0769) = 269.63 K
Final temperature; T2 = (160 × 5)/(2 × 2.0769) = 192.59 K
B) world one is given by the formula;
W = P(V2 - V1)
W = 160(5 - 7)
W = -320 KJ
Answer:
Power = 2.45Kw or 2450 Watts.
Explanation:
<u>Given the following data;</u>
Mass, m = 250kg
Height, h = 2m
Time, t = 2secs
We know that acceleration due to gravity, g is equal to 9.8m/s²
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have
Power = 2450 Watts
To convert to kilowatt (Kw), we would divide by 1000
Power = 2450/1000
Power = 2.45Kw.
Therefore, the average power output of the weightlifter is 2.45 Kilowatts.
Answer:
Scientists have studied eclipses since ancient times. Aristotle observed that the Earth's shadow has a circular shape as it moves across the moon. He posited that this must mean the Earth was round. Another Greek astronomer named Aristarchus used a lunar eclipse to estimate the distance of the Moon and Sun from Earth
Answer:
a)30.14 rad/s2
b)43.5 rad/s
c)60633 J
d)42 kW
e)84 kW
Explanation:
If we treat the propeller is a slender rod, then its moments of inertia is
a. The angular acceleration is Torque divided by moments of inertia:
b. 5 revolution would be equals to rad, or 31.4 rad. Since the engine just got started
c. Work done during the first 5 revolution would be torque times angular displacement:
d. The time it takes to spin the first 5 revolutions is
The average power output is work per unit time
or 42 kW
e.The instantaneous power at the instant of 5 rev would be Torque times angular speed at that time:
or 84 kW