F=1
Add 22 to both sides, then divide both sides by 3
Cos(A-B) = cosAcosB + sinAsinB
<span>
cos(</span>π/2 - θ) = cos(π/2)cosθ + sin(π/2)sinθ
π/2 = 90°
cos(π/2) = cos90° = 0. sin(π/2) = sin90° = 1
cos(π/2 - θ) = cos(π/2)cosθ + sin(π/2)sin<span>θ
</span>
= 0*cosθ + 1*sin<span>θ = </span>sin<span>θ
Therefore </span>cos(π/2 - θ) = sin<span>θ
QED </span>
Correct question is;
What function is the inverse of the exponential function y = 1.5^(x)?
Answer:
y = log_1.5_x
Step-by-step explanation:
The inverse of exponential functions is usually written in form of logarithm.
For example inverse of y = p^(x) will be written as; y = log_p_(x)
Similarly applying this same pattern to our exponential function y = 1.5^(x), we have the inverse as;
y = log_1.5_x