1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
6

An unknown number of identical light bulbs are connected to a 15 V battery in parallel. The current through the battery is 2 A.

If the light bulbs are connected to the battery in series, the current through the battery is 5 mA. How many bulbs are there?​
Physics
1 answer:
zaharov [31]3 years ago
7 0

Answer:

An unknown number of identical light bulbs are connected to a 15 V battery in parallel. The current through the battery is 2 A. If the light bulbs are connected to the battery in series, the current through the battery is 5 mA. How many bulbs are there?

3 bulbs are there from the analogy given above

Explanation:

You might be interested in
Light traveling in water (n = 1.33) into an unknown medium.If rhe angles if incidence and refraction are 40 degrees and 25 degre
Bess [88]
40 degreased and 25 dregrees=65 degrees‍♀️
8 0
3 years ago
Light is an oscillating magnetic field alone. an oscillating electric field alone. electric and magnetic fields that oscillate p
cupoosta [38]

Explanation:

  • As light is an electromagnetic wave that causes sensation of sight.  
  • Every electromagnetic wave has electrical and magnetic components in it which are perpendicular to the direction of propagation of wave.  
  • The electrical and magnetic components are mutually perpendicular to each other in an electromagnetic wave.
  • The speed of light in vacuum is c=3\times 10^{8}\ m.s^{-1}, which decreases when it passes through a matter (precisely a transparent medium) which allows the passage of light through it. When the light passes through some transparent matter then its speed decreases as compared to the speed of light in vacuum.
7 0
3 years ago
What is the car's speed at the bottom of the dip?The passengers in a roller coaster car feel 50% heavier thantheir true weight a
Rashid [163]

Answer:

v = 14 m/s

Explanation:

given,

radius of dip = 40 m

The passengers in a roller coaster car feel 50% heavier than their true weight.

Apparent weight

A = W + \dfrac{W}{2}

A =\dfrac{3W}{2}

A =\dfrac{3mg}{2}

When the car is at the bottom,  the weight will be acting downwards and the centripetal force will also be acting downward where as Normal force which is apparent weight will be acting in upward direction.

now,

N = m g + \dfrac{mv^2}{r}

\dfrac{3mg}{2} = m g + \dfrac{mv^2}{r}

\dfrac{mg}{2} = \dfrac{mv^2}{r}

v = \sqrt{\dfrac{rg}{2}}

v = \sqrt{\dfrac{40\times 9.8}{2}}

v = 14 m/s

8 0
3 years ago
to 10 Hz. Superimposed on this signal is 60-Hz noise with an amplitude of 0.1 V. It is desired to attenuate the 60-Hz signal to
givi [52]

Answer:

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

Explanation:

For this case we can use the formula for the Butterworth filter gain given by:

[tec] G = \frac{1}{\sqrt{1 +(\frac{f}{f_c})^{2n}}}[/tex]

Where:

G represent the transfer function and we want that G =0.1 since the desired signal is less than 10% of it's value

f_c = 10 Hz represent the corner frequency

f= 60 Hz represent the original frequency

n represent the filter order and that's the variable that we need to find

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

7 0
3 years ago
A spring is 17 cm long when it is lying on a table. One end is then attached to a hook and the other end is pulled by a force th
RideAnS [48]

Answer:

im pretty sure it B but I recommend waiting for another person. I used the workdone formula (Force*Dictance*cos(theta) and got 55 Joules

Explanation:

8 0
3 years ago
Other questions:
  • While sitting motionless in a 5 kg friction free wagon, an 80kg clown catches a 15 kg cannonball traveling horizontally at 20 m/
    11·1 answer
  • 1. A concave mirror has a focal length of 1.50 meters. What is the radius of curvature of the mirror? An object is placed 4.00 m
    14·1 answer
  • If the moon is new as seen from the earth, what phase would the earth be in as seen by an astronaut on the moon? explain your re
    6·1 answer
  • A snowball is thrown with an initial x velocity of 7.5 m/s and an initial y velocity of 8.4 m/s . Part A How much time is requir
    13·1 answer
  • Hi.
    8·2 answers
  • An immersion heater of power J= 500 W is used to heat water in a bowl. After 2 minutes, the temperature increases from T1= 85°C
    11·1 answer
  • Suppose an earthquake occurs on an imaginary planet. Scientists on the other side of the planet detect primary waves but not sec
    11·1 answer
  • A ball hangs on a string. The force of tension (Ft) in the string is 15n. The force due to gravity (Fg) pulls the ball down with
    9·1 answer
  • Walk done in units time is called​
    14·1 answer
  • A rock excerts a pressure of 20 N/cm^2 on the ground. what does 20N/cm^2 mean?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!