F= Force
M=Mass
A= acceleration
F=N
Mass= in grams or kilo grams (mostly kg)
A= m/s
Answer:
2.0 m/s/s
Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is given by:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it has both a magnitude and a direction.
For the runner in this problem, we have:
u = 0 is the initial velocity (he starts from rest)
v = 8.0 m/s is the final velocity
t = 4.0 s is the time taken
Substituting, we find

The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
Answer:
Explanation:
Projectile Motion. Projectile motion is different than free fall: it involves two dimensions instead of one. ... Balls traveling in two dimensions, only one of which experiences acceleration, require two sets of equations: one set for the x-direction and the other for the y-direction.