Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN
Explanation:
That's because the Sun's acceleration is much smaller
Answer:
4A
Explanation:
According to ohm's law;
E = IRt where;
E is the source voltage = 24volts
I is the total current flowing in the circuit = ?
Rt is the total effective resistance in the circuit.
To find Rt, we will resolve the resistors in parallel first.
Since 6ohms and 12ohms resistors are in parallel, their effective resistance will give;
1/R = 1/6+1/12
1/R= 2+1/12
1/R = 3/12
3R = 12
R = 4ohms.
This resistor will now be in series with the 2.0ohms resistor to finally have;
Rt = 4+2
Rt = 6ohms
From the ohms law formula;
I = E/Rt
I = 24/6
I = 4Amperes
The total current in the circuit is 4A
This same currents will flow in the 2ohms resistor since same current flows in a series connected resistors.
C) A current is induced in the coiled wire, which lights the light bulb
The moving magnetic field creates electricity which lights the light bulb
Hope it helps!
Answer:
The angular speed of the system increases.
The moment of inertia of the system decreases.
Explanation:
As we know that the girl is going towards the center of the circle so here the moment of inertia of the girl is given as

here we know that
r = position of the girl from the center of the disc
now we know that the girl is moving towards the center so its distance will continuously decreasing
So the moment of inertia of the girl will decrease
Now we know that that with respect to the center of the disc there is no torque on the disc + girl system
So here we can use angular momentum conservation
So we have

since moment of inertia is decreasing for the system
so angular speed will increase