Answer:
1.3823 rad/s
20.7345 m/s
28.66129935 m/s²

2006.29095 N radially outward
Explanation:
r = Radius = 15 m
m = Mass of person = 70 kg
g = Acceleration due to gravity = 9.81 m/s²
Angular velocity is given by

Angular velocity is 1.3823 rad/s
Linear velocity is given by

The linear velocity is 20.7345 m/s
Centripetal acceleration is given by

The centripetal acceleration is 28.66129935 m/s²
Acceleration in terms of g


Centripetal force is given by

The centripetal force is 2006.29095 N radially outward
The torque will be experienced when the centrifuge is speeding up of slowing down i.e., when it is accelerating and decelerating.
Answer:
a) -2.516 × 10⁻⁴ V
b) -1.33 × 10⁻³ V
Explanation:
The electric field inside the sphere can be expressed as:

The potential at a distance can be represented as:
V(r) - V(0) = 
V(r) - V(0) =
₀
V(r) =
₀
Given that:
q = +3.83 fc = 3.83 × 10⁻¹⁵ C
r = 0.56 cm
= 0.56 × 10⁻² m
R = 1.29 cm
= 1.29 × 10⁻² m
E₀ = 8.85 × 10⁻¹² F/m
Substituting our values; we have:

= -2.15 × 10⁻⁴ V
The difference between the radial distance and center can be expressed as:
V(r) - V(0) = 
V(r) - V(0) = ![[\frac{qr^2}{8 \pi E_0R^3 }]^R](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bqr%5E2%7D%7B8%20%5Cpi%20E_0R%5E3%20%7D%5D%5ER)
V(r) = 
V(r) = 
V(r) 
V(r) = -0.00133
V(r) = - 1.33 × 10⁻³ V
Answer:
it is light
Explanation:
the arrow that says light is on the glass it must be near from tungsten
From the formula, V=displacement/time
displacement/distance =velocity*time
distance=1200*2.5
distance=3*10³km
Answer:
the riders must be greater than friction and the force of gravity. uh I guessed