Answer:
Spring constant in N / m = 6,000
Explanation:
Given:
Length of spring stretches = 5 cm = 0.05 m
Force = 300 N
Find:
Spring constant in N / m
Computation:
Spring constant in N / m = Force/Distance
Spring constant in N / m = 300 / 0.05
Spring constant in N / m = 6,000
Sound waves are not able to travel in a vacuum, sound requires a medium such as air or a solid for example. Satellites are indeed in space, but radio waves are not sound waves they are a form of light. Light can travel in a vacuum so the messages that satellites beam back to Earth are light waves not sound waves, that is why it is possible.
Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules. That's it.
Answer:
A)
= 1.44 kg m², B) moment of inertia must increase
Explanation:
The moment of inertia is defined by
I = ∫ r² dm
For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is
I = ½ m R²
A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is
I =
+ m D²
Let's apply these equations to our case
The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms
=
+ 2
= ½ M R²
The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body
M = 7/8 m total
M = 7/8 64
M = 56 kg
The mass of the arms is
m’= 1/8 m total
m’= 1/8 64
m’= 8 kg
As it has two arms the mass of each arm is half
m = ½ m ’
m = 4 kg
The arms are very thin, we will approximate them as a particle
= M D²
Let's write the equation
= ½ M R² + 2 (m D²)
Let's calculate
= ½ 56 0.20² + 2 4 0.20²
= 1.12 + 0.32
= 1.44 kg m²
b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase
Answer:
trigonometry (guessing)
Explanation:
ellipse: is the shape of an orbit : looks like an oval
periapsis : shortest distance between something like the moon and the planet its orbiting around like the earth
parallax is triangulation. like how gps works. looking at a star one day and then looking at it again 6 months later, an astronomer can see a difference in the viewing angle for the star. With trigonometry, the different angles yield a distance. This technique works for stars within about 400 light years of earth
https://science.howstuffworks.com/question224.htm
By comparing the intrinsic brightness to the star's apparent brightness we can calculate the distance of stars
1/r^2 rule states that the apparent brightness of a light source is proportional to the square of its distance.Jan 11, 2022
https://www.space.com/30417-parallax.html
alternative distance measurement for stars used by most astronomers is the parsec. A star with a parallax angle of 1 arcsecond has a distance of 1 parsec, or 1 parsec per arcsecond of parallax, which is about 3.26 light years
blossoms.mit.edu
.