Looking at both reactions, we can see that the combustion of carbon, graphite or diamond, leads to the formation of carbon dioxide and energy. Since energy is a product of the reaction, we known that this is an exothermic reaction. The value of the change in enthalpy, ΔH, will be negative.
A negative value of ΔH in each exothermic reaction suggests that the carbon dioxide product is at a lower energy than the reactants. And since more energy is released in the combustion of diamond compared to graphite, we know that diamond has a higher internal energy than graphite.
Use the PV = nRT equation T is in Kelvins = 31 + 273 = 304 K
P(0.5) = (2.91)(0.0821)(304)
P(0.5) = 72.6289
P = 145.25 atm or 1.45x10^2 atm
Answer:
fusion reaction
The simple answer is that the sun, like all stars, is able to create energy because it is essentially a massive fusion reaction. Scientists believe that this began when a huge cloud of gas and particles (i.e. a nebula) collapsed under the force of its own gravity – which is known as Nebula Theory.
Explanation:
hope this helps
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Density = mass/volume
D = 40/80 = 0.5g
D= 0.5g