Answer:
Keep it simple. If all the oxygen contained in the 200 grams of potassium chlorate is produced in the decomposition, then all we have to do is find out how many grams of oxygen are there in the 200 grams. This we can do by calculating the ratio of oxygen mass to the whole. Using 39.1 for potassium, 35.45 for chlorine and 3 times 16, or 48 for the oxygen, we get a total of 122.55 grams per mole for potassium chlorate, of which 48 grams are oxygen. This ratio is 48/122.55. This ratio times the original 200 grams of the compound, gives us 78.34 grams of oxygen produced.
Explanation:
The service rating of passengers car and commercial automotive motor oils
Answer:
V = 0.798 L
Explanation:
Hello there!
In this case, for this gas stoichiometry problem, we first need to compute the moles of carbon dioxide via stoichiometry and the molar mass of starting calcium carbonate:

Next, we use the ideal gas equation for computing the volume, by bearing to mind that the STP conditions stand for a pressure of 1 atm and a temperature of 273.15 K:

Best regards!
Answer:
See explanation
Explanation:
Extraction has to do with the separation of the components of a mixture by dissolving the mixture in a set up involving two phases. One phase is the aqueous phase (beneath) while the other is the organic phase (on top). The solvents used for the two phases must not be miscible. Water commonly is used for the aqueous phase.
Ethanol is an important solvent in chemistry but the solvent is miscible with water in all proportions. As a result of this, ethanol is a poor solvent for carrying out extraction.
I think there is 4 electrons in the outer shell of 14 atomic number. If I'm wrong, know that I'm not very good.