Answer:
Mass = 357.7 g
Explanation:
Given data:
Mass of Fe = 250 g
Mass of oxygen = 120 g
Mass of iron(III) oxide produced = ?
Solution:
Chemical equation:
4Fe + 3O₂ → 2Fe₂O₃
Number of moles of Fe:
Number of moles = mass/molar mass
Number of moles = 250 g/ 55.8 g/mol
Number of moles = 4.48 mol
Number of moles of O₂ :
Number of moles = mass/molar mass
Number of moles = 120 g/ 32 g/mol
Number of moles = 3.75 mol
Now we will compare the moles of reactants with product.
Fe : Fe₂O₃
4 : 2
4.48 : 2/4×4.48 = 2.24
O₂ : Fe₂O₃
3 : 2
3.75 : 2/3×3.75= 2.5
Less number of moles of Fe₂O₃ are produced by Fe thus it will act as limiting reactant.
Mass of Fe₂O₃:
Mass = number of moles × molar mass
Mass = 2.24 mol × 159.69 g/mol
Mass = 357.7 g
The correct answer to the question above is fussion of uranium. The fussion of uranium is the only type of reaction in which produces the most dangerous radioactive waste. The fusion of uranium means the binding of their atoms and produce a radioactive waste.
Answer:
V = 22.41 L
Explanation:
Given data:
Mass of nitrogen = 14.0 g
Volume of gas at STP = ?
Gas constant = 0.0821 atm.L/mol.K
Solution:
Number of moles of gas:
Number of moles = mass/molar mass
Number of moles= 14 g/ 14 g/mol
Number of moles = 1 mol
Volume of gas:
PV = nRT
1 atm × V = 1 mol × 0.0821 atm.L/mol.K × 273 K
V = 22.41 atm.L / 1 atm
V = 22.41 L
Neutrons have no electrical charge.