Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :


k = 1150 J
In two significant figure, 
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. 

P = 115 watts
In two significant figures, 
Hence, this is the required solution.
Answer:
Magnetic field in Tesla: 1.65*10^−10 T, 0, 3.09*10^−10 T
Explanation:
Given data:
i = 4.8 A ,
dBx = 1.65*10^-10 T
dBy = 0 T
dBz = 3.09 * 10^-10 T
Attached below is the detailed solution
Answer
acceleration due to gravity on Jupiter's moon,g' = 1.81 m/s²
weight of water melon on earth, W = 40 N
acceleration due to gravity on earth, g = 9.8 m/s²
a) Mass on the earth surface
M = 4.08 Kg
b) Mass on the surface of Lo
Mass of an object remain same.
Hence, mass of object at the surface of Lo = 4.08 Kg.
c) Weight at the surface of Lo
W' = m g'
W' =4.08 x 1.81
W' = 7.38 N
Answer:
100N
Explanation:
Newton's third law states that whenever an object exerts a force on a second object, it exerts a force of equal magnitude and direction but in the opposite direction on the first. It is often stated as follows: Each action always opposes an equal but opposite reaction.
The subject 1 of 100kg is making a force F, to move an object from 50Kg to 2m / s ^ 2. This Force the object of 50Kg will reflect it in the opposite direction by Newton's third law.
Once the parameter of the force that both are experiencing is clarified, Newton's second law is applied to their respective calculation.

That is the force the boy exert on the man during the shove.