1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VashaNatasha [74]
3 years ago
7

A bullet of mass 0.1 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 3 kg that is sitting at re

st on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? v = m/s (b) Calculate the kinetic energy of the bullet plus the block before the collision: Ki = J (c) Calculate the kinetic energy of the bullet plus the block after the collision: Kf = J
Physics
1 answer:
Xelga [282]3 years ago
6 0

Answer:

(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s

(b) the kinetic energy of the bullet plus the block before the collision is 500J

(c) the kinetic energy of the bullet plus the block after the collision is 16.13J

Explanation:

Given;

mass of bullet, m₁ = 0.1 kg

initial speed of bullet, u₁ = 100 m/s

mass of block, m₂ = 3 kg

initial speed of block, u₂ = 0

Part (A)

Applying the principle of conservation linear momentum, for inelastic collision;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

where;

v is the speed of the block after the bullet embeds itself in the block

(0.1 x 100) + (3 x 0) = v (0.1 + 3)

10 = 3.1v

v = 10/3.1

v = 3.226 m/s

Part (B)

Initial Kinetic energy

Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²

Ki =  ¹/₂(0.1 x 100²) +  ¹/₂(3 x 0²)

Ki = 500 + 0

Ki = 500 J

Part (C)

Final kinetic energy

Kf = ¹/₂m₁v² + ¹/₂m₂v²

Kf = ¹/₂v²(m₁ + m₂)

Kf = ¹/₂ x 3.226²(0.1 + 3)

Kf = ¹/₂ x 3.226²(3.1)

Kf = 16.13 J

You might be interested in
1. What part of the Earth do “faults” appear?
alekssr [168]

Answer:

Faults are found in collisions zones, and tectonic plates push up against mountain ranges for example the Himalayas or the Rocky Mountains.

Explanation:

6 0
3 years ago
I will give brainliest) According to Newton's second law of motion, when an object is acted on by an unbalanced force, how will
evablogger [386]
Newton's<span> first </span>law of motion<span> has been frequently stated throughout this lesson. An</span>object<span> at rest stays at rest and an </span>object<span> in </span>motion<span> stays in </span>motion<span> with the same speed and in the same direction unless </span>acted<span> upon by an </span>unbalanced force<span>.</span>
4 0
3 years ago
Read 2 more answers
An iron wire has a length of 1.50 m and a cross sectional area of 0.290 mm2. If the resistivity of iron is 10.0 ✕ 10−8 Ω · m and
lapo4ka [179]

Answer:

1.35 A

Explanation:

Applying,

V = IR

I = V/R..................... Equation 1

I = Current, V = Voltage, R = Resistance.

But,

R = Lρ/A............... Equation 2

Where L = Length of the wire, ρ = resistivity, A = Cross-sectional area of the wire.

Sustitute equation 2 into equation 1

V = AV/Lρ............... Equation 3

From the question,

Given: V = 0.7 V, A = 0.290 mm² = 2.9×10⁻⁷ m², L = 1.5 m, ρ = 10×10⁻⁸ Ω.m

Substitute these values into equation 3

I = (0.7× 2.9×10⁻⁷)/(1.5× 10×10⁻⁸ )

I = (2.03×10⁻⁷)/(15×10⁻⁸)

I = 1.35 A

5 0
2 years ago
What is the correct path of electrons?
MrRa [10]

Electrons are transferred sequentially between the two photosystems, with photosystem I acting to generate NADPH and photosystem II acting to generate ATP. The pathway of electron flow starts at photosystem II, which is homologous to the photosynthetic reaction center of R. viridis already described.

3 0
2 years ago
The two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1965 kg and car B has a mass of 1
Sunny_sXe [5.5K]

Answer:

U2 = 47.38m/s = initial velocity of B before impact

Explanation:

An example of the diagram is shown in the attached file because of missing angle of direction in the question

Mass A, B are mass of cars

A = 1965

B =1245

U1 = initial velocity of A = 52km/hr

U2 = initial velocity of B

V = common final velocity of two cars

BU2 = (A + B)*V sin ¤ ...eq1 y plane

AU1 = (A + B) *V cos ¤ ....equ 2plane

From equ 2

V = AU1/(A + B)*cos ¤

Substitute V into equation 1

We have

U2 = (AU1/B)tan ¤ where ¤ = angle of direction which is taken to be 30°

Substitute all parameters to get

U2 = (1965/1245)*52 * tan 30°

U2 = 47.38m/s

8 0
3 years ago
Other questions:
  • The intensity level of a "Super-Silent" power lawn mower at a distance of 1.0 m is 100 dB. You wake up one morning to find that
    6·1 answer
  • PLEASE NEED HELP NOW!11 50 POINTS AND BRAINLY!!!!!!
    9·2 answers
  • An 80kg student running at 3.50m/s grabs a rope that is hanging vertically. How high will the student swing?
    9·1 answer
  • Is my answer correct or no?
    10·2 answers
  • An object with a temperature of 0 Kelvin would not emit radiation.<br> a. True<br> b. False
    12·2 answers
  • Three boxes rest side-by-side on a smooth, horizontal floor. Their masses are 5.0 kg, 3.0 kg, and 2.0 kg, with the 3.0-kg mass i
    9·1 answer
  • A 1.3 kgkg block slides along a frictionless surface at 1.3 m/sm/s . A second block, sliding at a faster 5.0 m/sm/s , collides w
    9·2 answers
  • A vector A~ has a negative x component 2.89 units in length and a positive y component 3.17 units in length. The vector A~ can b
    13·1 answer
  • PLEASE HELP ME WITH THIS ONE QUESTION
    11·1 answer
  • You are standing 5 m from a loud machine. You move 10 m from the machine to help reduce the intensity of the sound. Calculate th
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!