Answer:
vf = 3.27[m/s]
Explanation:
In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.
With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.
With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.
Then we equalize the two stress equations and we can clear the acceleration.
a = 3.58 [m/s^2]
As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.
![x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Aa%2At%5E%7B2%7D%5C%5C1.5%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%283.58%29%20%2At%5E%7B2%7D%20%5C%5Ct%20%3D%200.91%20%5Bs%5D)
And the speed can be calculated as follows:
![v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%5C%5Cv_%7Bf%7D%3D0%2B%283.58%2A0.915%29%5C%5Cv_%7Bf%7D%3D%203.27%5Bm%2Fs%5D)
Divide (25,000) by (the number of miles you can walk in 1 hour).
The answer you get is the number of hours it would take you to walk around the Earth once, IF you were able to walk on water too.
The correct answer is (a.) Hydra. Hydra is not a dwarf planet, instead, it is the moon of the dwarf planet, Pluto. There are only four accepted dwarf planets by the International Astronomical Union which were the Haumea, Pluto, Eris, and Makemake.
Answer:
The distance travel by block before coming to rest is 0.122 m
Explanation:
Given:
Mass of block
kg
Initial speed of block

Final speed of block

Coefficient of kinetic friction 
Ramp inclined at angle
28.4°
Using conservation of energy,
Work done by frictional force is equal to change in energy,

Where 



m
Therefore, the distance travel by block before coming to rest is 0.122 m
Answer:
5,970 N
Explanation:
m = 597 kg
a = 10 m/s^2
Plug those values into the following equation:
F = ma
F = (597 kg)(10 m/s^2)
F = 5,970 N