1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
15

Was the cannonball able to hit its target of 50 meters when the initial velocity was 20 m/s? Why?/Why Not?

Physics
1 answer:
frosja888 [35]3 years ago
3 0

Answer:

The cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.

Explanation:

From the question given above, the following data were obtained:

Height to which the target is located = 50 m

Initial velocity (u) = 20 m/s

To know whether or not the cannon ball is able to hit the target, we shall determine the maximum height to which the cannon ball attained. This can be obtained as follow:

Initial velocity (u) = 20 m/s

Final velocity (v) = 0 (at maximum height)

Acceleration due to gravity (g) = 10 m/s²

Maximum height (h) =?

v² = u² – 2gh (since the ball is going against gravity)

0² = 20² – (2 × 10 × h)

0 = 400 – 20h

Collect like terms

0 – 400 = – 20h

– 400 = – 20h

Divide both side by – 20

h = – 400 / – 20

h = 20 m

Thus, the the maximum height to which the cannon ball attained is 20 m.

From the calculations made above, we can conclude that the cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.

You might be interested in
A 7300 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.20 m/s2 and feels no appreci
Simora [160]

Answer:

Explanation:

We shall first calculate the velocity at height h = 575 m .

acceleration a = 2.2 m /s²

v² = u² + 2 a s

u is initial velocity , v is final velocity , s is height achieved

v² = 0 + 2 x 2.2 x 575

v = 50.3 m /s

After 575 m , rocket moves under free fall so g will act on it downwards

If it travels further by height H

from the relation

v² = u² - 2 g H

v = 0 , u = 50.3 m /s

H = ?

0 = 50.3² - 2 x 9.8 H

H = 129.08 m

Total height attained by rocket

= 575 + 129.08

= 704.08 m .

4 0
2 years ago
A proton and an electron are moving in the +x direction in a magnetic field in the +z
Aleksandr [31]

Answer:

Explanation:

Force on a moving charge is given by the following relation

F = q ( v x B )

for proton

q = e  ,   v = vi  , B = Bk

F = e ( vi x Bk )

= Bev - j

= - Bevj

The direction of force is along negative of y axis or -y - axis.

for electron

q = - e  ,   v = vi  , B = Bk

F = - e ( vi x Bk )

= - Bev - j

=  Bevj

The direction of force is along positive  of y axis or + y - axis.

5 0
3 years ago
A series of optical telescopes produced an image that has a resolution of about 0.00350 arc second.
Mila [183]

Answer:

The smallest diameter is D =122 \ m

Explanation:

From the question we are told that

       The resolution of the telescope is \theta  =  0.00350 \ arc \ second

           The wavelength is  \lambda = 1.70 \mu m = 1.70 *10^{-6} \ m

From the question we are told that

        1 arc \ sec = \frac{1}{3600^o}

So      0.00350 \ arc \ second = x

Therefore

             x =  0.00350  *  \frac{1}{3600 }

              x = ( 9.722*10^{-7} )^o

Now  1^o  =  \frac{\pi}{180}

   So  (9.722*10^{-7})^o =  \theta

  =>    \theta  =  (9.722*10^{-7}) * \frac{\pi}{180}

           \theta  =  1.69*10^{-8} rad

The smallest diameter is mathematically represented  as

          D = \frac{1.22 \lambda }{\theta  }

substituting values

           D = \frac{1.22 * 1.7 *10^{-6}} {1.69 *10^{-8}  }

           D =122 \ m

   

6 0
3 years ago
A man 2 m tall walks horizontally at a constant rate of 1 m/s toward the base of a tower 23 m tall. When the man is 10 m from th
Evgen [1.6K]

Answer:

\dfrac{d\theta}{dt}=0.038\ rad/s

Explanation:

Given that

\dfrac{dx}{dt}= -1\ m/s

From the diagram

tan\theta=\dfrac{21}{x}

By differentiating with time t

sec^2\theta \dfrac{d\theta}{dt}=-\dfrac{21}{x^2}\dfrac{dx}{dt}

When x= 10 m

tan\theta=\dfrac{21}{10}

θ = 64.53°

Now by putting the value in equation

sec^2\theta \dfrac{d\theta}{dt}=-\dfrac{21}{x^2}\dfrac{dx}{dt}

sec^264.53^{\circ} \dfrac{d\theta}{dt}=-\dfrac{21}{10^2}\times (-1)

\dfrac{d\theta}{dt}=0.038\ rad/s

Therefore rate of change in the angle is 0.038\ rad/s

8 0
3 years ago
Assuming a 8 kilogram bowling ball moving at 2 m/s bounces off a spring at the same speed that had before bouncing what is the a
Naya [18.7K]

a) 32 kg m/s

Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

p_i = m u = (8 kg)(2 m/s)=16 kg m/s

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

p_{fB}=m v_b =(8 kg)(-2 m/s)=-16 kg m/s

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

p_f = p_{fB}+p_{fS}

where p_{fS} is the momentum of the spring. For the conservation of momentum,

p_i = p_f\\p_i = p_{fB}+p_{fS}\\p_{fS}=p_i -p_{fB}=16 kg m/s -(-16 kg m/s)=32 kg m/s


b) -32 kg m/s

The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

\Delta p=p_{fb}-p_i=-16 kg m/s - 16 kg m/s=-32 kg m/s


c) 64 N

The change in momentum is equal to the product between the average force and the time of the interaction:

\Delta p=F \Delta t

Since we know \Delta t=0.5 s, we can find the magnitude of the force:

F=\frac{\Delta p}{\Delta t}=\frac{-32 kg m/s}{0.5 s}=-64 N

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.


d) The force calculated in the previous step (64 N) is larger than the force of 32 N.

5 0
3 years ago
Other questions:
  • When water freezes, the density decreases and the bonds between molecules become stronger. Do you expect the speed of sound to b
    6·1 answer
  • Which type of seismic wave can only pass through the earths mantle?
    14·1 answer
  • At the instant a traffic light turns green, a car starts from rest with a given constant acceleration of 0.5 m/s squared. Just a
    12·1 answer
  • Planets formed from ____ left over from the formation of the Sun at the center of the cloud. A. Gravel c. Solar wind b. Gas, ice
    8·2 answers
  • Which of Jafar's statements are correct regarding distance and displacement?
    14·1 answer
  • "If you double the wavelength of a wave on a particular string", what happens to the wave speed v and the frequency f ? (i) v do
    5·2 answers
  • Suppose a car manufacturer tested its cars for front-en4 collisions by hauling them up on a crane and dropping then; from a cert
    9·1 answer
  • Friction exists only when two objects rub against each other.<br> A.True<br> B.False
    14·2 answers
  • A 45.0-kg person steps on a scale in an elevator. The scale reads 460 n. What is the magnitude of the acceleration of the elevat
    10·1 answer
  • What would happen when two or more capacitors are connected in parallel across a potential difference?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!