Answer:
<h2>30% is enrolled out-of-district.</h2>
Step-by-step explanation:
According to the word problem, the number is increased by 50%.
To increase a number by a percent, multiply the number and the percent.
We can do this by changing both percents to decimals.
To change a percent to a decimal, divide it by 100.


The number is INCREASED by 50% so 0.5 would become 1.5.

<h2>0.3 = 30%.</h2>
Answer:
The amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.
Step-by-step explanation:
Let the random variable <em>X</em> represent the amount of money that the family has invested in different real estate properties.
The random variable <em>X</em> follows a Normal distribution with parameters <em>μ</em> = $225,000 and <em>σ</em> = $50,000.
It is provided that the family has invested in <em>n</em> = 10 different real estate properties.
Then the mean and standard deviation of amount of money that the family has invested in these 10 different real estate properties is:

Now the lowest 80% of the amount invested can be represented as follows:

The value of <em>z</em> is 0.84.
*Use a <em>z</em>-table.
Compute the value of the mean amount invested as follows:


Thus, the amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).