Answer:
![312.5\pi \text{ km}^3\approx 981.75\text{ km}^3](https://tex.z-dn.net/?f=312.5%5Cpi%20%5Ctext%7B%20km%7D%5E3%5Capprox%20981.75%5Ctext%7B%20km%7D%5E3)
Step-by-step explanation:
We have been given that a series of 3 separate, adjacent tunnels is constructed through a mountain. Its length is approximately 25 kilometers.
Each of the three tunnels is shaped like a half-cylinder with a radius of 5 meters.
Since we know that volume of a semicircular or a half cylinder is half the volume of a circular cylinder.
, where,
r = Radius of cylinder,
h = height of the cylinder.
Upon substituting our given values in volume formula we will get,
![\text{Volume of a semicircular cylinder}=\frac{\pi (5\text{ km})^2*25\text{ km}}{2}](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20a%20semicircular%20cylinder%7D%3D%5Cfrac%7B%5Cpi%20%285%5Ctext%7B%20km%7D%29%5E2%2A25%5Ctext%7B%20km%7D%7D%7B2%7D)
![\text{Volume of a semicircular cylinder}=\frac{\pi*25\text{ km}^2*25\text{ km}}{2}](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20a%20semicircular%20cylinder%7D%3D%5Cfrac%7B%5Cpi%2A25%5Ctext%7B%20km%7D%5E2%2A25%5Ctext%7B%20km%7D%7D%7B2%7D)
![\text{Volume of a semicircular cylinder}=\frac{\pi*625\text{ km}^3}{2}](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20a%20semicircular%20cylinder%7D%3D%5Cfrac%7B%5Cpi%2A625%5Ctext%7B%20km%7D%5E3%7D%7B2%7D)
![\text{Volume of a semicircular cylinder}=\pi*312.5\text{ km}^3](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20a%20semicircular%20cylinder%7D%3D%5Cpi%2A312.5%5Ctext%7B%20km%7D%5E3)
![\text{Volume of a semicircular cylinder}=\pi*312.5\text{ km}^3](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20a%20semicircular%20cylinder%7D%3D%5Cpi%2A312.5%5Ctext%7B%20km%7D%5E3)
![\text{Volume of a semicircular cylinder}=981.74770\text{ km}^3](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20a%20semicircular%20cylinder%7D%3D981.74770%5Ctext%7B%20km%7D%5E3)
Therefore, the volume of earth removed to build the three tunnels is
.