Answer:
1π
Step-by-step explanation:
suppose the radius of semicircle P is r,
then the radius of semicircle Q = (r+d)/2 ... d≤r
radius of semicircle R = (r-d)/2
area P = 1/2 (r)²π
area Q = 1/2 ((r+d)/2)² π = 1/8 (r² + 2rd + d²)π
area R = 1/2 ((r-d)/2)² π = 1/8 (r² - 2rd + d²)π
shaded area = P-Q-R = 1/2 r²π - 1/4 (r² + d²)π
= ((r² - d²)/4) * π
because there is no constant r value in the question and d value changes with the r change, when the vertical segment length equal the semicircle P radius (r), r=2 and d = 0
therefore the shaded area = ((2² -0²)/4)*π = 1π
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
The equation x = 180 - (31 + 40) can be used. Because the angles are in a straight line ad straight line equals 180 degrees
Answer:
Use the formula r = d/t. Your rate is 24 miles divided by 2 hours, so: r = 24 miles ÷ 2 hours = 12 miles per hour. Now let's say you rode your bike at a rate of 10 miles per hour for 4 hours.
Step-by-step explanation:
Answer:
DG = 30
Step-by-step explanation:
Given:
DH = 6
DE = 4
EF = 16
Required:
DG
Solution:
DG = DH + HG
DG = 6 + HG
Let's find HG
Given that HE is parallel to the third side of ∆DGF, based on the side-splitter theorem, the other two sides of ∆DGF are divided proportionally.
Therefore,
DH/HG = DE/EF
6/HG = 4/16
Cross multiply
HG*4 = 16*6
HG = 96/4
HG = 24
✔️DG = 6 + HG
DG = 6 + 24
DG = 30