Answer:
see below
Explanation:
First, the obvious, as you press the gas pedal harder the acceleration goes up as well. Conversely, is you do not press the pedal, you will not accelerate. This determines that is I press the gas pedal, it will CAUSE the car to accelerate. This proves causation.
Now, correlation. The definition of correlation in statistics is any statistical relationship between two random variables or data. This simply means that these two events are connected to one another. A POSITIVE correlation is when two correlated events move in the same direction as one another. I have added a graph to help visualize this. In this problem as the gas is pressed harder, the acceleration increases. If the pressure on the pedal was decreased, then the acceleration also decreases. If the pressure on the pedal is constant, the the acceleration is constant.
I hope this helps!
Answer:
look it up im not a sheaperd sorry
Explanation:
Answer:
i. 6.923 V
ii. The e.m.f. = 22.5 V
Explanation:
i. The given parameters are;
Length of potentiometer = 1 m
The resistance of the potentiometer = 10 Ω
The e. m. f. of the attached cell = 9 V
The current, I flowing in the circuit = e. m. f/(Total resistance)
The current, I flowing in the circuit = 9 V/(10 + 3) = 9/13 A
The potential difference, p.d. across the 1 m potentiometer wire = I × Resistance of the potentiometer wire
The p.d. across the potentiometer wire = 9/13×10 = 90/13 = 6.923 V
ii) Given that the 1 m potentiometer wire has a resistance of 10 Ω, 75 cm which is 0.75 m will have an e.m.f. given by the following relation;

Where:
E = e.m.f. of the balance point cell
= Resistance of 75 cm of potentiometer wire = 0.75×10 = 7.5 Ω
= Resistance of the cell in the circuit = 3 Ω
V = e.m.f. attached cell = 9 V

E = 7.5*3 = 22.5 V
The e.m.f. = 22.5 V
Answer:
Explanation:
Given
mass of ice 
Final temperature of liquid 
Specific heat of water 
Latent heat of fusion 
Latent heat of vaporization 
Suppose M is the mass of steam at 
Heat required to melt ice and convert it to water at 

Heat released by steam

and
must be equal as the heat gained by ice is equal to Heat released by steam


![\Rightarrow M=\dfrac{m[L+c\times T_f]}{L_v+c(100-T_f)}](https://tex.z-dn.net/?f=%5CRightarrow%20M%3D%5Cdfrac%7Bm%5BL%2Bc%5Ctimes%20T_f%5D%7D%7BL_v%2Bc%28100-T_f%29%7D)
![\Rightarrow M=\dfrac{119[333\times 10^3+4186\times 57]}{2256\times 10^3+4186\times (100-57)}](https://tex.z-dn.net/?f=%5CRightarrow%20M%3D%5Cdfrac%7B119%5B333%5Ctimes%2010%5E3%2B4186%5Ctimes%2057%5D%7D%7B2256%5Ctimes%2010%5E3%2B4186%5Ctimes%20%28100-57%29%7D)

