Answer:
2.4 m
Explanation:
Consider the motion along the vertical direction
= initial position of ball above the ground = 4.5 m
= time taken by the ball to hit the smokestack = 0.65 s
= initial velocity of the ball along vertical direction
= acceleration due to gravity = - 9.8 m/s²
= position of ball at the time of hitting the smokestack
Using the kinematics equation

inserting the above values

When you compare all organisms around us, even the smallest ones, you see that they have Life; You could even see this as a trend of some sort.
Answer: An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Explanation: To find the answer, we need to know about the Ammeter and Voltmeter.
<h3>What is an ammeter?</h3>
- An ammeter is a device, that can be used to measure the electric current flows through a circuit in amperes.
- An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance when it is connected in series to measure the current.
<h3>What is voltmeter?</h3>
- A voltmeter is a device, that can be used to measure the electric potential difference generated between the terminals of an electric circuit in volts.
- An ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter, when it is connected in parallel to measure the voltage.
Thus, we can conclude that, an ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Learn more about the ammeter and voltmeter here:
brainly.com/question/28044897
#SPJ4
Answer:
4.91 x 10⁻⁷ m
Explanation:
the applicable formula is
v = fλ
where
v = velocity (i.e speed) = given as 3.0 x 10⁸ m/s
f = frequency = given asw 6.11 x 10¹⁴
λ = wavelength
if we rearrange the equation and substitute the values given above,
v = fλ
λ = v/f
= 3.0 x 10⁸ / 6.11 x 10¹⁴
= 4.91 x 10⁻⁷ m
The direction of a vector multiplied by a scalar is only affected if the scalar is negative, in which case the vector will now be in the opposite direction. If the scalar is positive, the vector will only change in magnitude