The force of gravity between the astronauts is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
are the masses of the two objects
r is the separation between them
In this problem, we have two astronauts, whose masses are:

While the separation between the astronauts is
r = 2 m
Substituting into the equation, we can find the gravitational force between the two astronauts:

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
If you cannot get a chair to move across the floor, it is because static friction opposes your push. When you say static or kinetic friction the two object that facing each other are opposing each other. That's why you're having a hard time pushing the chair.
Question 25 Answer: Destructive interference occurs.
<span>Question 26Answer: The waves are closer together (as they move) because the object is moving toward you.</span>
<span />
Answer:
0.363999909622
Explanation:
F = Force
m = Mass = 15.6 g
C = Drag coefficient
ρ = Density of air = 1.21 kg/m³
A = Surface area = 
v = Terminal velocity = 
s = Displacement = 150 m

Force is given by
F = ma

The drag coefficient is 0.363999909622 (ignoring negative sign)
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=