Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
An example of a mechanical wave is a sound wave
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Among the choices the one that is correct about relationship between the readings is letter D which is RC RD
You got the formulas on the sheet on the top :) So just use those, exchanging v (as in velocity, expressed in m/s) and the d (in meters) and t (in seconds). Hope you will manage it.
Answer:
The induced emf can be found by Faraday’s Law.


The magnetic field is increasing at a rate of 0.1T/s. So,

Finally,

Explanation:
Faraday’s Law states that a change in the magnetic flux induces an emf in the circuit. The magnetic flux is the multiplication of magnetic field and the area of the loop. The area of the loop is simple, and the change of magnetic field as a function of time is given in the question.
The minus sign in front of the Faraday’s Law means that the induced current always opposes the change of the magnetic flux. Since we do not know the direction of the magnetic field in this question, we cannot find the direction of the induced emf on the loop.