1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
2 years ago
15

This is simplifying algebraic expressions, i want to know how you do this and can you show the steps so i understand better? Tha

nks!

Mathematics
1 answer:
AnnyKZ [126]2 years ago
8 0

Answer:

1) 12 - 4m

2) -10 - 15b

3) 44r - 30

4) -23 +21g

5) 10y

6) -5x - 10

7) -13r - 1

8) 11g - 7

9) 6n

10) -18n - 12

Step-by-step explanation:

Note:

a) Simplification is making sure that the expression can no longer be worked on.

b) "Minus * Minus = Plus" ,  "Plus * Plus = Plus" and  "Minus * Plus = Minus"

c) Like terms are terms that are of the same type

1) 7 - 4m + 5

collect like terms

  = (7+5) - 4m

  = 12 - 4m

2) -5(2 + 3b)

Multiply each term by -5

= -10 - 15b

3) 4r - 5(-8r + 6)

open the bracket by multiplying each term in the bracket by -5

= 4r + 40r - 30

collect like terms

= 44r - 30

4) -3(9-7g) + 4

open the bracket by multiplying each term in the bracket by -3

= -27 + 21g + 4

collect like terms

= -23 +21g

5) 9y + y

both terms are alike

∴ 10y

6) -9x - 2 - 8 + 4x

collect like terms

= -9x + 4x - 2 - 8

= -5x - 10

7) -6r - 7r - 9 + 8

collecting the like terms

= -13r - 1

8) 6g + 5g - 7

Collecting like terms

= 11g - 7

9) 7n - n

both are like terms

= 6n

10) 6(-3n - 2)

Open the bracket by multiplying each term by 6

= -18n - 12

You might be interested in
Can a smart brainstormer help me
lukranit [14]
The answer is .1391
Hope this helps!
(If your confused, I just put this in a calculator)
3 0
2 years ago
Read 2 more answers
A rectangular swimming pool measures 40 ft by 60 ft and is surrounded by a path of uniform width around the four edges. The peri
Alex_Xolod [135]

Answer:

<em><u>6ft</u></em>

Step-by-step explanation:

<em><u>Lets</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em><em><u> </u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>surrounding </u></em><em><u>path</u></em><em><u> </u></em><em><u>wil</u></em><em><u>l</u></em><em><u> </u></em><em><u>add</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>pool</u></em><em><u> </u></em><em><u>dimension</u></em><em><u>,therefore</u></em><em><u> </u></em><em><u>over</u></em><em><u> </u></em><em><u>all</u></em><em><u> </u></em><em><u>dimesion</u></em><em><u>:</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>over</u></em><em><u>all</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>(</u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>2x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u> </u></em><em><u>Simplify</u></em><em><u> </u></em><em><u>divide</u></em><em><u> </u></em><em><u>b</u></em><em><u>y</u></em><em><u> </u></em><em><u>2,</u></em><em><u> </u></em><em><u>result</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u>)</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u> </u></em><em><u>Combine</u></em><em><u> </u></em><em><u>like</u></em><em><u> </u></em><em><u>term</u></em><em><u>s</u></em><em><u> </u></em><em><u>2x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em>

<em><u>4x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em>

<em><u>4</u></em><em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>/</u></em><em><u>4</u></em>

<em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u>ft</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>th</u></em><em><u>e</u></em><em><u> </u></em><em><u>width</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>path</u></em>

<em><u>check</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>finding</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>with</u></em><em><u> </u></em><em><u>these</u></em><em><u> </u></em><em><u>values</u></em><em><u>;</u></em><em><u> </u></em><em><u>2</u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>12</u></em><em><u> </u></em><em><u>ft</u></em><em><u> </u></em>

<em><u>2</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>4</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u>6</u></em><em><u>0</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em>

<em><u>2</u></em><em><u>(</u></em><em><u> </u></em><em><u>5</u></em><em><u>2</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>2</u></em><em><u>(</u></em><em><u>7</u></em><em><u>2</u></em><em><u>)</u></em>

<em><u>1</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em><em><u>4</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>2</u></em><em><u>4</u></em><em><u>8</u></em><em><u>;</u></em><em><u> </u></em><em><u>confirms</u></em><em><u> </u></em><em><u>our</u></em><em><u> </u></em><em><u>solution</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>ft</u></em>

5 0
3 years ago
Find the 79th term of the following arithmetic sequence. 5,11, 17, 23...
NikAS [45]

Answer:

the answer is 479.

Step-by-step explanation:

to make it simpler, pretend you start from 1. 1,7,so on. multiply six by 79, to get 474. but because you are starting from 5 and not 1, you have to add 5 on.

sorry im super bad at math so this might be wrong

4 0
2 years ago
Read 2 more answers
There are many properties of exponents. These properties are used to make problems with exponents simpler.
Stels [109]

Answer:

Power of a Quotient.

explanation: The Power of a Quotient Rule states that the power of a quotient is equal to the quotient obtained when the numerator and denominator are each raised to the indicated power separately, before the division is performed.

8 0
3 years ago
Select the graph for the solution of the open sentence. Click until the correct graph appears. |x| &gt; 4
nadezda [96]

Answer:

***********o                                                         o**************

<----------(-4)--------(-2)--------(0)--------(-2)----------(4)-------------->

x>4 or x<-4

Step-by-step explanation:

You are looking for numbers that give you a distance, x, greater than 4 from 0. That wouldn't be anything between -4 and 4 because these would all give you a distance less than 4 from 0. So the answer would be to shade everything greater than 4 while also shading everything less than -4.

Here is a number line <-----|-----|-----|-----|-----|-----|-----|-----|-->

                                          -6    -4   -2    0     2     4    6    8

                                                 

Let's think about this more which of these numbers on this number line would satisfy |x|>4?

Numbers inside the numbers -4 and 4.

Or the numbers on the outside.

Let's try the inside numbers:

-2,02

|-2|>4

 2>4 is false which means -2 doesn't satisfy |x|>4

|0|>4

 0>4 is false which means 0 doesn't satisfy  |x|>4

|2|>4

 2>4 is false which means 2 doesn't satisfy  |x|>4

We could also try -4 and 4... but these will both give you a distance equal to 4 from 0.  And we are looking for greater than.

|-4|>4

 4>4 is false which mean -4 doesn't satisfy |x|>4

|4|>4

 4>4  is false which means 4 doesn't satisfy |x|>4

Now let's try the numbers on the outside:

-6,6,8

|-6|>4

 6>4 is true so -6 does satisfy |x|>4

|6|>4

 6>4 is true so 6 does satisfy |x|>4

|8|>4

 8>4 is true so 8 does satisfy |x|>4

So what I'm trying to do is convince you more that the only numbers that would satisfy |x|>4 are numbers outside the interval from -4 to 4.

So x>4 or x<-4.

On a number line the solution would look like this:

***********o                                                         o**************

<----------(-4)--------(-2)--------(0)--------(-2)----------(4)-------------->

We have holes at -4 and 4 to mean we do not include those numbers.  We would have if the inequality read |x| \ge 4.  The line underneath this inequality means to include or equals.  We do not want to include; we did not have the equal sign.   The only difference between the two solutions would be to fill the holes if you |x| \ge 4.

4 0
2 years ago
Other questions:
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    5·1 answer
  • How do i graph the lines when the equations aren’t in slope intercept form????
    7·1 answer
  • What do you get when you round 490.625 to the nearest tenth
    6·1 answer
  • Really need help plss
    12·1 answer
  • Helpp plsss!!!! I've to submit ASAP
    10·2 answers
  • Help that’s it just help I’ll give brainiest
    9·1 answer
  • You have a bag of marbles that contains, 7 red, 4 green, and 5 yellow
    13·1 answer
  • Course Task
    14·1 answer
  • Given the function below find f(7) f(x)= -x^2+9x
    10·1 answer
  • What are the solutions to the system of equations? y=x2−7x+12y=−x+7
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!