Option 2 is your answer :)
Answer:
I think it has to do something with their ionizations... not entirely sure though.
Explanation:
Regardless of the speed of the ball or its angle, once it has left the kickers foot it's acceleration is always g downward. -9.81m/s^2
Answer:
v = 88.89 [m/s]
Explanation:
To solve this problem we must use the principle of conservation of momentum which tells us that the initial momentum of a body plus the momentum added to that body will be equal to the final momentum of the body.
We must make up the following equation:

where:
F = force applied = 4000 [N]
t = time = 0.001 [s]
m = mass = 0.045 [kg]
v = velocity [m/s]
![4000*0.001=0.045*v\\v=88.89[m/s]](https://tex.z-dn.net/?f=4000%2A0.001%3D0.045%2Av%5C%5Cv%3D88.89%5Bm%2Fs%5D)
The Net Force would be 2 N to the left.
21 N is being used to push the box to the right and 23 N is used to push it left. There is a stronger force pushing the box towards the left. The different in the two numbers would give you the net force acting on the box and the direction of the arrow with the greatest force will tell you the direction.