1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
6

A baseball (m=140g) traveling 32m/s moves a fielders

Physics
1 answer:
posledela3 years ago
7 0

Answer:

Average force, F = 286.72 N

Explanation:

Given that,

Mass of the baseball, m = 140 g = 0.14 kg

Speed of the ball, v = 32 m/s

Distance, h = 25 cm = 0.25 m

We need to find the average  force exerted by the ball on the glove. It is solved using the conservation of energy as :

\dfrac{1}{2}mv^2=mgh

F = mg

\dfrac{1}{2}mv^2=Fh

F=\dfrac{mv^2}{2h}

F=\dfrac{0.14\times (32)^2}{2\times 0.25}

F = 286.72 N

So, the average force exerted by the ball on the glove is 286.72 N. Hence, this is the required solution.

You might be interested in
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
3 years ago
4. How much time does it take for a student running at a speed of 5 m/s to cover a distance of 2,000 m?
Monica [59]

Answer:

6 Minutes 40 Seconds or 400 Seconds

Explanation:

Time to cover a distance of 5m = 1 Second

Time to cover a distance of 2000m = 2000÷5

= 400 Seconds

After converting 400 Seconds into minutes it will become 6 minutes 40 seconds.

Those who found this helpful please give me a Thanks to support me. So, I can explain other questions more clearly. If you don't want to mark me Brainliest don't mark. But, please give me a Thanks.

6 0
3 years ago
The alternative to nuclear fission reactors in a nuclear fusion reactor. Explain why it is much more difficult to get a fusion r
Sliva [168]

Answer: The major challenges are as

1) understanding of the plasma: Plasma is a soup like mixture of subatomic particles of different atoms nuclei and electrons that are shattered apart by the temperature at which plasma is formed. further research is needed to understand the behavior of plasma so that it can be put to a proper use.

2) Confinement of plasma: Once we get the plasma we need to hold it so that we can obtain heat from it to drive a steam turbine but the sheer temperature of plasma is in millions of Celsius thus currently making it impossible to confine conventionally. Scientists use a loop of electric and magnetic fields to keep it in circulatory like manner so that it can be studied.

3) finally to obtain electricity from the plasma it should be stable to produce electricity. But currently to obtain pressure, temperature so that we have a sustained supply is highly difficult in technical and economical aspects.

Inertial confinement: In order to get the nuclei of atoms close enough for fusion this type of method used compression of the nuclei into highly small volumes.This is accomplished by use of lasers which are directed towards the fuel pellets that implode and travel towards other nuclei making fusion possible. It's main advantage is that it requires lesser time to initiate fusion but the disadvantage being that a large power is used to fire the lasers and the lasers should all hit the small target.

Magnetic Confinement: In this method we use a magnetic and electric fields in a properly designed space to keep the plasma in motion. In motion the nuclei of the atoms come close enough to initiate fusion.It's advantage being less power is required to start the process as compared to inertial confinement and the disadvantage being that plasma confinement is currently not properly understood.

5 0
3 years ago
The image shows the positions of a car on a roller coaster track. Arrange the cars in order based on their gravitational potenti
RideAnS [48]

Correct order, from lowest potential energy to highest potential energy:

E - C - D - B - A

Explanation:

The gravitational potential energy of the car is given by:

U=mgh

where

m is the car's mass

g is the gravitational acceleration

h is the height of the car relative to the ground

In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.

5 0
3 years ago
Read 2 more answers
If you push a 4-kg mass...
Lena [83]

Answer:

B

Explanation:

F = ma , a = F/m

a1 = F/10 and a2 = F/4

Since Force is constant, a2 will we greater than a1

4 0
3 years ago
Other questions:
  • Which of the following is a TRUE statement about the differences between electromagnetic and mechanical waves?
    9·2 answers
  • What determines the ideal mechanical <br> advantage of a pulley?
    10·1 answer
  • A planet's temperature depends on its distance from the Sun as well as the strength of its greenhouse effect. Let's remove the e
    11·1 answer
  • You are playing hockey with friends on a very large frozen pond. The hockey puck is at your feet motionless. You take a slap-sho
    12·1 answer
  • A ball is dropped from the top of a building.
    10·1 answer
  • Red clothes will---the red light.A)Reflect B)refract C)Absorb D)transmission E)Dispersion
    13·1 answer
  • A particle (charge = +0.8 mC) moving in a region where only electric forces act on it has a kinetic energy of 6.7 J at point A.
    7·1 answer
  • How will heat flow between objects?
    5·2 answers
  • An impulse of 12.2kg m/s is delivered to an object whose initial momentum is 4.5kgm/s. What is the object's final momentum?
    12·1 answer
  • A lorry of mass 4000 kg is travelling at a speed of 4 m/s.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!