Microplastics contain harmful chemicals that can accumulate in the food chain. The other chemicals released into the water when the plastic breaks down also has a negative impact on the sealife around. And with humans consuming contaminated fish and seafood, plastic pollution is certainly a human health issue too. microplastics were providing a medium to facilitate the transport of other toxic compounds such as heavy metals and organic pollutants.
Answer:
The measurement which is the most precise is 104.6 °C.
Explanation:
The measurement which is most precise must be very close to the actual value of the temperature.
Thus, the unit which have less value of the |Δx| (error) must be most precise.
Thus,
Actual value = 105.1 °C
Value = 103.7 °C
<u>|Δx| = 1.4 °C</u>
Value = 108.4 °C
<u>|Δx| = 3.3 °C</u>
Value = 105.8 °C
<u>|Δx| = 0.7 °C</u>
Value = 104.6 °C
<u>|Δx| = 0.5 °C</u>
<u>Thus, The measurement which is the most precise is 104.6 °C.</u>
If electromagnetic radiation acted like particles in the double-slit experiment, we would observe one bright band would appear in the center of the screen.
<h3>Bahavior of particles in double-slit experiment</h3>
In a double-slit experiment, single particles, such as photons, pass one at a time through a screen containing two slits.
The photons behave like wave and the constructive interfernce of the waves of these photons will generate a high amplitude wave seen as a bright band in the center of the screen.
Thus, if electromagnetic radiation acted like particles in the double-slit experiment, we would observe one bright band would appear in the center of the screen.
Learn more about double slit experiment here: brainly.com/question/4449144
Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz