<span>The maxima of an equation can be obtained by taking the 1st
derivative of the equation then equate it to 0.</span>The value of N that result in best yield is when dy/dn = 0.
Taking the 1st derivative of
the equation y=(kn)/(9+n^2) :<span>
</span>
By using the quotient
rule the form of the equation is:<span>
y = g(n) / h(n)
where:</span>
g(n) = kn --->
g'(n) = k
<span>
<span>h(n) = 9 + n^2 ---> h'(n) = 2n </span>
dy/dn is defined as:
<span>dy/dn = [h(n) * g'(n) - h'(n) * g(n)] / h(n)^2
dy/dn = [(9 + n^2)(k) - (kn)(2n)] / (9 +
n^2)^2
dy/dn = (9k + kn^2 - 2kn^2) / (9 + n^2)^2
dy/dn = (9k - kn^2) / (9 + n^2)^2
dy/dn = k(9 - n^2) / (9 + n^2)^2
<span>Equate dy/dn = 0, then solve for n
k(9 - n^2) / (9 + n^2)^2 = 0
k(9 - n^2) = 0
9 - n^2 = 0
n^2 = 9
n = sqrt(9)
n = 3
<span>Answer: The nitrogen
level that gives the best yield of agricultural crops is 3 units.</span></span></span></span>
Answer:
The resulting, needed force for equilibrium is a reaction from a support, located at 2.57 meters from the heavy end. It is vertical, possitive (upwards) and 700 N.
Explanation:
This is a horizontal bar.
For transitional equilibrium, we just need a force opposed to its weight, thus vertical and possitive (ascendent). Its magnitude is the sum of the two weights, 400+300 = 700 N, since weight, as gravity is vertical and negative.
Now, the tricky part is the point of application, which involves rotational equilibrium. But this is quite simple if we write down an equation for dynamic momentum with respect to the heavy end (not the light end where the additional weight is placed). The condition is that the sum of momenta with respect to this (any) point of the solid bar is zero:

Where momenta from weights are possitive and the opposed force creates an oppossed momentum, then a negative term. Solving our unknown d:

So, the resulting force is a reaction from a support, located at 2.57 meters from the heavy end (the one opposed to the added weight end).
Answer:
Calorimetry
Explanation:
In the calorimetry experiments, mix a known amount of a high temperature material, about 100 ° C, with an equivalent amount of water at room temperature. In a device thermally isolated from the environment, and the initial and final temperatures of liquid and solid are analyzed and energy conservation relationships, the specific heat of the unknown material can be found.
Answer:
A. New space missions show that Pluto is much larger than originally thought.
Explanation:
The new definition of a planet that was adopted in 2006, defined planet as an object that orbits the sun, with sufficient mass to be round, not a satellite of another object, and has removed debris and small objects from the area around its orbit.
This new definition of a planet that was adopted in 2006, classified Pluto as "dwarf planet", because Pluto meets planetary criteria except that it has not cleared debris from its orbital neighborhood.
However, new Horizons spacecraft flew by Pluto in 2015, revealed that Pluto is much larger than originally thought
Therefore, the correct option is "A"
A. New space missions show that Pluto is much larger than originally thought.
Answer:
The automobile tire rotates 91 revolutions
Explanation:
Given;
angular acceleration of the automobile, α = 2.13 rad/s²
time interval, t = 23.2-s
To calculate the number of revolutions, we apply the first kinematic equation;

the initial angular velocity is zero,

Find how many revolutions that are in 573.2256 Rad

Therefore, the automobile tire rotates 91 revolutions