The impulse is (force) x (time) = (20 N) x (20 sec) = 400 N-sec
When we grind through the units, we find that the [newton-second]
is exactly the same as the [kilogram-meter/sec] unit-wise, and once
we know that, it doesn't surprise us to learn that impulse is equivalent
to a change in momentum (mass x speed ... also kg-m/s).
So this impulse exerted on the moving object adds 400 kg-m/s of
linear momentum to its motion, directed to the right. That may or
may not be the total change in its momentum during that 20-sec,
because our 20-N may not be the only force acting on it.
Protein has 4 cals carbs have 4 too. Fat however has 9.
Answer:
148(m/s)
Explanation:
V_final = V_current + (acceleration) x (time)
= 4 + 80 x 1.8 = 148 (m/s)
Explanation:
They will have not much control over their speed or rotational energy. they will carry a lot of gravitation potential energy which will get converted to kinetic energy as they fall through the atmosphere. They will reach their terminal velocity, the fastest they can travel with earth's gravity before they pull their parachute, when they use a parachute to extend their surface area, increasing wind resistance. this allows them to land safely.
Absolutely ! If you have two vectors with equal magnitudes and opposite
directions, then one of them is the negative of the other. Their correct
vector sum is zero, and that's exactly the magnitude of the resultant vector.
(Think of fifty football players pulling on each end of the rope in a tug-of-war.
Their forces are equal in magnitude but opposite in sign, and the flag that
hangs from the middle of the rope goes nowhere, because the resultant
force on it is zero.)
This gross, messy explanation is completely applicable when you're totaling up
the x-components or the y-components.