Answer:
the density of ordinary (baryonic) matter in the universe
Explanation:
Deuterium detection is of interest because the amount of it may be related to the amount of dark matter in the universe, but precise measurements have been difficult to obtain. Due to the way in which deuterium was created in the Big Bang, an exact measurement of the amount of deuterium would allow scientists to set limits on the models of the great explosion.
Also, an exact measure of deuterium would be an indicator of the cosmic density of barions (ordinary matter), and that density of barions would indicate whether ordinary matter is dark and is found in regions such as black holes, gas clouds or brown dwarfs, or it is bright and can be found in the stars. This information will help scientists who try to understand the very beginning of our universe.
Answer:
Mass of the pull is 77 kg
Explanation:
Here we have for
Since the rope moves along with pulley, we have
For the first block we have
T₁ - m₁g = -m₁a = -m₁g/4
T₁ = 3/4(m₁g) = 323.4 N
Similarly, as the acceleration of the second block is the same as the first block but in opposite direction, we have
T₂ - m₂g = m₂a = m₂g/4
T₂ = 5/4(m₂g) = 134.75 N
T₂r - T₁r = I·∝ = 0.5·M·r²(-α/r)
∴ 

Mass of the pull = 77 kg.
Momentum = mass × velocity
360 = mass × 7.2
mass = 360/7.2 = 50 kg
Hope it helped!!
Answer:
Speed = 0.296m/2
Period = 0.203 s
Explanation:
If by 'long' you mean the wavelength of the waves, then the wavelength
.
The frequency
of the waves is 14.8 waves every 3 seconds or
.
Now the relationship between wavelength
, frequency
and speed
of the waves is:

We put in the values
and
and get:
Now the period
is just the inverse of the frequency, or


Answer:
Thomson's atomic model was successful in explaining the overall neutrality of the atom. However, its propositions were not consistent with the results of later experiments. In 1906, J. J. Thomson was awarded the Nobel Prize in physics for his theories and experiments on electricity conduction by gases.
Summary. J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup."