Answer:
The boiling point is somewhere between 56 and 151 °C
Explanation:
Hello,
In this case, it is possible to compute it via rigorous methods in phase equilibrium by using for example a cubic equation of state to model the vapor phase and a suitable excess Gibbs free energy model for the liquid phase, nonetheless, it is an arduous task. In such a way, since the information about both acetone's and nonane's pure boiling points is given as well as acetone's mole fraction, which points out it is about a binary liquid solution, one could make up the boiling point is somewhere between 56 and 151 °C precising that it should be closer to 151 °C as the mixture is 90% nonane and 10% acetone.
Best regards.
(32.0 g Ne) / (20.1797 g Ne/mol) × (6.022 × 10^23 atoms/mol) = 9.55 × 10^23 atoms N3
Answer:
They are called homogenous mixtures. If you put sand into a glass of water, it is considered to be a mixture. You can always tell a mixture, because each of the substances can be separated from the group in different physical ways. You can always get the sand out of the water by filtering the water away.
Answer:
The options are
A. a hypothesis
B. a theory
C. a research question
D. a scientific explanation
The answer is A. a hypothesis
Explanation:
A hypothesis is referred to as a brief explanation on the occurrence of an event.
In the example above using of warm water on plants was inferred to make it grow faster as hot water increases the metabolism.
Answer: Option (3) is the correct answer.
Explanation:
When a more reactive element or atom replaces a less reactive atom then this type of reaction is known as single displacement reaction.
In the given reaction, potassium iodide reacts with fluorine and results in the formation of potassium fluoride and iodine.
Here, fluorine being more reactive displaces iodine from potassium iodide.
Therefore, it is a single replacement or displacement reaction.