Answer: At STP, a mole of gas takes up 22.4 Liters. The 22.4 Liters/mole quantity can be derived from the Ideal Gas Law, PV = nRT, plugging in STP conditions for P and T, and solving for V/n, which gets 22.4 Liters/mole.
Explanation:
They are examples of physical<span> contaminants .</span>
Answer:
The range of atoms = (30-300 pm) depending upon the element
Explanation:
The Atomic radii of the atom is the distance from the center of the circle to the outermost orbital.
The center of the circle is the nucleus and the radii is the outermost boundary.
The actual size of the atom is decided on the basis of the Zeff . Also known as <em>effective nuclear charge.</em>
<em>Zeff: It is the net positive charge felt by the outermost electron by the nucleus.</em>
<em>The value of Zeff depends upon the shielding constant. More the shielding less will be the Zeff . Hence the size of the atom increases.</em>
Due to shielding the outermost electrons feel less pull of nucleus.
<em>The greater the Zeff , the smaller the radius of the atom.</em>
The formula used to calculate the atomic mass is :
pm
Here "pm"= picometers

<u>The size of the smallest atom H-atom = 120 pm</u>
<u>The range of atoms = (30-300 pm)</u>
We need (i) the stoichiometric equation, and (ii) the equivalent mass of dihydrogen.
Explanation:
1
2
N
2
(
g
)
+
3
2
H
2
(
g
)
→
N
H
3
(
g
)
11.27
g
of ammonia represents
11.27
⋅
g
17.03
⋅
g
⋅
m
o
l
−
1
=
?
?
m
o
l
.
Whatever this molar quantity is, it is clear from the stoichiometry of the reaction that 3/2 equiv of dihydrogen gas were required. How much dinitrogen gas was required?
Answer:
Chromosomes and I think its too many
Explanation: