Here are the three great pioneers of rocket science and some of their contributions:
1. <span>Konstantin Tsiolkovsky - a Russian teacher who realized that liquid fuel instead of solid fuel is needed for rockets to fly outside of Earth's gravity
2. Robert Goddard - an American scientist who created a new system for rockets that cooled that gases that were leaving them which improved the way rockets work significantly
3. Hermann Oberth - a German scientist who created the rocket V-2 which was used in the WWII as a missile bomb</span>
Answer:
To check if it's properly cleaned.
Explanation:
When you finish using a microscope, you have to take out all your samples you were using and make sure it is completely clean so that no further contamination affects future sample analysis.
Also when you begin to use it, make sure it is clean so that when you analyze your sample(s) are free from other unexpected agents.
Answer:
Carbon-13
Explanation:
Carbon have three isotopes. Isotopes are the atoms of the same element which has a different number of neutrons. Carbon has 3 isotopes.
Carbon-12 : 6 electrons I 6 protons I 6 neutrons
Carbon-13 : 6 electrons I 6 protons I 7 neutrons
Carbon-14 : 6 electrons I 6 protons I 8 neutrons
<span>C2H5
First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2.
Carbon = 12.0107
Hydrogen = 1.00794
Oxygen = 15.999
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass.
moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles
moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles
The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule.
Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen.
moles C = 0.50899
moles H = 0.638361 * 2 = 1.276722
We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon.
total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185
7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked.
Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen.
0.50899 / 1.276722 = 0.398669
0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5.
Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is
C2H5</span>
We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃