Answer:
Charge density on the sphere = 2.2 × 10⁻⁸ C/m²
Explanation:
Given:
Radius of sphere (r) = 12 cm = 0.12 m
Distance from the electric field R = 24 cm = 0.24 m
Magnitude (E) = 640 N/C
Find:
Charge density on the sphere
Computation:
Charge on the sphere (q) = (1/K)ER² (K = 9 × 10⁹)
Charge on the sphere (q) = [1/(9 × 10⁹)](640)(0.24)²
Charge on the sphere (q) = 4 × 10⁻⁹ C
Charge density on the sphere = q / [4πr²]
Charge density on the sphere = [4 × 10⁻⁹] / [4(3.14)(0.12)²]
Charge density on the sphere = [4 × 10⁻⁹] / [0.18]
Charge density on the sphere = 2.2 × 10⁻⁸ C/m²
The ball's horizontal component of velocity (ie it's horizontal speed) is 20 cos 40degrees. Without knowing the distance of the ball to the wall it's difficult to go further ...
Answer:
The capacitance per unit length is 
(b) is correct option.
Explanation:
Given that,
Radius a= 2.50 mm
Radius b=7.50 mm
Dielectric constant = 3.68
Potential difference = 120 V
We need to calculate charge per length for the capacitance
Using formula of charge per length

Put the value into the formula


We know that,

We need to calculate the capacitance per unit length
Using formula of capacitance per unit length



Hence, The capacitance per unit length is 
Answer:
This question is asking to identify the following variables:
Independent variable (IV): Battery
Dependent variable (DV): Time the clock stopped
Constant: Same clock
Control: No stated control
Explanation:
The independent variable in an experiment is the variable that is subject to manipulation or change by the experimenter. In this experiment, the independent variable is the BATTERIES (Duracell, Energizer, Kroger brand, EverReady).
The dependent variable is the variable that responds to the changes made to the independent variable. It is the variable that the experimenter measures. In this case, the dependent variable is the TIME IT TAKES FOR THE CLOCK TO STOP.
Constants or control variable is the variable that the experimenter keeps constant or unchanged for all groups throughout the experiment in order not to influence the outcome of the experiment. The constant in this case is the SAME CLOCK USED.
Control group is the group that does not receive the experimental treatment or independent variable in an experiment. In this case, all groups received a different kind of battery.