(a) The amount of work required to change the rotational rate is 0.0112 J.
(b) The decrease in the rotational inertia when the outermost particle is removed is 64.29%.
<h3>
Moment of inertia of the rod</h3>
The moment of inertia of the rod from the axis of rotation is calculated as follows;
I = md² + m(2d)² + m(3d)²
where;
- m is mass = 10 g = 0.01 kg
- d = 3 equal division of the length
d = 6/3 = 2 cm = 0.02 m
I = md²(1 + 2² + 3²)
I = 14md²
I = 14(0.01)(0.02)²
I = 5.6 x 10⁻⁵ kg/m³
<h3>Work done to change the rotational rate</h3>
K.E = ¹/₂Iω²
K.E = ¹/₂(5.6 x 10⁻⁵)(60 - 40)²
K.E = ¹/₂(5.6 x 10⁻⁵)(20)²
K.E = 0.0112 J
<h3>Percentage decrease of rotational inertia when the outermost particle is removed</h3>
I₂ = md² + m(2d)²
I₂ = 5md²
ΔI = 14md² - 5md²
ΔI = 9md²
η = (ΔI/I) x 100%
η = (9md²/14md²) x 100%
η = 64.29 %
Learn more about rotational inertia here: brainly.com/question/14001220
#SPJ1
They will say hamsters are related to birds lol
Answer:
because only two electrons can fit in the first orbit around the nucleus, and each period on the table is organized by number of orbits
Answer:
The strength of gravity decreases.
An example of that would be if you were in space; you float around because there's no gravity.
In a fluid, all the forces exerted by the individual particles combine to make up the pressure exerted by the fluid
Due to fundamental nature of fluids, a fluid cannot remain at rest under the presence of shear stress. However, fluids can exert pressure normal to any contacting surface. If a point in the fluid is thought of as a small cube, then it follows from the principles of equilibrium that the pressure on every side of this unit of fluid must be equal. but if this were not a case, the fluid would move in the directions of the resulting force, So the pressure on a fluid at rest is isotropic.
Hope This Helps :D <span />