Answer:
C. y = 2 (x + 3)³ − 4
Step-by-step explanation:
y = x³
Stretch vertically by 2.
y = 2x³
Shift horizontally 3 units to the left.
y = 2 (x + 3)³
Shift vertically 4 units down.
y = 2 (x + 3)³ − 4
Answer:
3.60
Step-by-step explanation:
1.80 x 2
We know that a three-pose portrait package has a sitting fee of $35 and <span> a six-pose package has a sitting fee of $60. The total amount they collect is $690.
</span>
We can answer the first part of the question not taking intersecting function into account. The domain of
is all the numbers, x∈(-∞, +∞) and the range is y∈(-∞, 36]. We can observe these results with the help of a graph, as well. Since we are talking about the rainbow, the values above the ground level will make sense. In this case, we will take into account the range as it changes between 0 and 36, included and the domain between -6 and 6. Here (0;36) is the y-intercept and (-6;0) and (6;0) are the x-intercepts of the parabola.
Since in our problem, the linear function that intersects parabola is not given, we have to provide it by ourselves according to the conditions of the problem. It could be any line intersecting parabola in two points. One important point is that the y-intercept has to be no more than 36. Considering these conditions, we can set our linear function to be
. We can observe the points that we included in the table (they have been given with orange dots in the graph and the table is attached below). We can see that the values of the function (values of y) are positive. Indeed, we are discussing the part of the rainbow above the ground level.
The system of equations with linear and quadratic functions has got two solutions and we can observe that result from the graph. The solutions are (-5.823; 2.088) and (5.323; 7.662). The solutions are the intersection points.
4. SOLVE FOR X:
Using the Alternate Interior Angles Theorem, we know that the 67 degree angle is congruent with the (12x - 5) degree angle. With this information, all I have to do is set the two equal to each other and solve for x.
67 = 12x - 5
67 + 5 = 12x - 5 + 5
72/12 = 12x/12
6 = x
x = 6
SOLVE FOR Y:
Using the Vertical Angles theorem, we know that angle y must be congruent to the 67 degree angle.
y = 67 degrees.
5. SOLVE FOR Y:
Alternate exterior angles: 6(x - 12) = 120
6x - 72 + 72 = 120 + 72
6x/6 = 192/6
x = 32
SOLVE FOR Y:
6((32) - 12) + y = 180
192 - 72 + y = 180
120 + y - 120 = 180 - 120
y = 60