1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Misha Larkins [42]
3 years ago
12

Solve the equation for x, where x is a real number (5 points): -7x^2 + 3x - 28 = -34

Mathematics
1 answer:
Sonbull [250]3 years ago
8 0
Start by adding 34 to both sides so that the equation becomes -7x^2 + 3x + 6 = 0. To find the solutions to this equation, we can apply the quadratic formula. This quadratic formula solves equations of the form ax^2 + bx + c = 0
                               x = [ -b ± √(b^2 - 4ac)] /(2a)
                               x = [-3 ± √((3)^2 - 4(-7)(6)) ] / ( 2(-7) )
                               x = [-3 ± √(9 - (-168) ) ] / ( -14 )
                               x = [-3 ± √(177) ] / ( -14)
                               x = [-3 ± sqrt(177) ] / ( -14 )
                               x = 3/14 ± -sqrt(177)/14
The answers are 3/14 + sqrt(177)/14 and 3/14 - sqrt(177)/14.
You might be interested in
Please help!! <br>circles combos are too hard​
malfutka [58]

Answer:

56 + 53pi

Step-by-step explanation:

<u><em>Area of small circles:</em></u>

diameter of small circle: 4cm

forumla to find area of circle: A = pir^2

r is radius = half of diameter -> d/2 = 4 / 2 = 2cm

A = pi (2cm)^2

A = pi (4cm)

A = 4pi

<u><em>Area of large circle:</em></u>

diameter of small circle: 4cm

forumla to find area of circle: A = pir^2

r is radius = half of diameter -> d/2 = 14 / 2 = 7cm

A = pi (7cm)^2

A = pi (49cm)

A = 49pi

<u><em>Area of rectangle:</em></u>

Area = width x length

Area = 14cm x 4cm

Area = 56cm

<u><em>Add all three areas:</em></u>

Area of rectangle + large circle + small circle

56cm + 49pi + 4pi = 56cm + 53pi

7 0
2 years ago
            Find the approximate solution of this system of equations.
Montano1993 [528]
Y = |x² - 3x + 1|
y = x - 1

|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1)       or      |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1)    or    |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1        or         |x² - 3x + 1| = -x + 1
  x² - 3x + 1 = x - 1         or          x² - 3x + 1 = -x + 1
        - x        - x                                + x         + x
  x² - 4x + 1 = -1           or            x² - 2x + 1 = 1
              + 1 + 1                                       - 1 - 1
  x² - 4x + 1 = 0              or           x² - 2x + 0 = 0
  x = -(-4) ± √((-4)² - 4(1)(1))    or    x = -(-2) ± √((-2)² - 4(1)(0))
                      2(1)                                             2(1)
  x = 4 ± √(16 - 4)            or            x = 2 ± √(4 - 0)
                 2                                                 2
  x = 4 ± √(12)              or               x = 2 ± √(4)
             2                                                  2
 x = 4 ± 2√(3)               or               x = 2 ± 2
             2                                                2
 x = 2 ± √(3)                or                x = 1 ± 1
 x = 2 + √(3)  or  x = 2 - √(3)   or    x = 1 + 1    or    x = 1 - 1
                                                      x = 2       or       x = 0
y = x - 1          or           y = x - 1                            or    y = x - 1   or    y = x - 1
y = (2 + √(3)) - 1    or    y = (2 - √(3)) - 1          or         y = 2 - 1    or    y = 0 - 1
y = 2 - 1 + √(3)     or      y = 2 - 1 - √(3)          or           y = 1      or       y = -1
y = 1 + √(3)        or        y = 1 - √(3)               (x, y) = (2, 1)    or    (x, y) = (0, -1)
       (x, y) = (2 ± √(3), 1 ± √(3))

The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
4 0
3 years ago
Help please :) I will show the next questions in the other one so please answer them.
Yuki888 [10]

Answer:

Can you please take a better picture

Step-by-step explanation:

6 0
4 years ago
For the following right triangle, find the side length x. Round your answer to the nearest hundredth.
Aleksandr-060686 [28]

Answer:

\sqrt{113} = x

Step-by-step explanation:

In right triangles the sum of square length of two legs is equal to square length of hypotenuse:

7^2 + 8^2 = x^2

49 + 64 = x^2 add like terms

113 = x^2 find the root for both sides

\sqrt{113} = x

8 0
3 years ago
Pls help me thank you ​
SOVA2 [1]

Answer:

A no. is correct one

Step-by-step explanation:

Hope it will help you. and please mark me brilliant

4 0
2 years ago
Read 2 more answers
Other questions:
  • Sarah invested $800 in an account paying an interest rate of 3.5% compounded quarterly. Assuming no deposits or withdrawals are
    14·1 answer
  • Write the converse form of: If an angle measures 180 degrees,<br> then it is a straight angle.
    5·1 answer
  • The average age at which adolescent girls reach their adult height is 16 years. Suppose you have a sample of 29 adolescent girls
    5·1 answer
  • At a restaurant. three friends all ordered the daily special. Each person had a coupon for $2 off the price of the special. They
    10·1 answer
  • Help me please I’m so confused
    11·1 answer
  • What are the solution of a quadratic equation 49x^2 = 9​
    6·1 answer
  • Which describes the cross section of the rectangular prism that passes through vertices A, B, C, and D?
    14·2 answers
  • If x = 10, which lines are parallel? Check all that apply.
    5·1 answer
  • 2x<img src="https://tex.z-dn.net/?f=2x%5E%7B2%7D%20-%2014x%20%2B%2024" id="TexFormula1" title="2x^{2} - 14x + 24" alt="2x^{2} -
    9·1 answer
  • a) On Wednesday, Harry sold 3 times as many candy bars as on Tuesday. On Thursday, he sold 5 times as many bars as on Wednesday.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!