Answer:
3 lol
Step-by-step explanation:
9514 1404 393
Answer:
- parallel: y = 4x -6
- perpendicular: y = -1/4x +27/4
Step-by-step explanation:
If we want the new line to be written in slope-intercept form, we need to find the new value of the y-intercept. The equation of the line is ...
y = mx +b . . . . . . . for slope m and y-intercept b
Solving for b gives ...
b = y -mx . . . . . . . subtract mx from both sides.
The values of x and y come from the point we want the line to pass through. The value of m will be the same for the parallel line as for the given line: 4. For the perpendicular line, it will be the opposite reciprocal of this: -1/4.
<u>Parallel line</u>
b = 6 -4(3) = 6 -12 = -6
y = 4x -6
Perpendicular line
b = 6 -(-1/4)(3) = 6 +3/4 = 27/4
y = -1/4x +27/4
Answer:
(-10,-10)
Step-by-step explanation:
9x-9y=0
3x-4y=10
In elimination, we want both equations to have the same form and like terms to be lined up. We have that. We also need one of the columns with variables to contain opposites or same terms. Neither one of our columns with the variables contain this.
We can do a multiplication to the second equation so that the first terms of each are either opposites or sames. It doesn't matter which. I like opposites because you just add the equations together. So I'm going to multiply the second equation by -3.
I will rewrite the system with that manipulation:
9x-9y=0
-9x+12y=-30
----------------------Add them up!
0+3y=-30
3y=-30
y=-10
So now once you find a variable, plug into either equation to find the other one.
I'm going to use 9x-9y=0 where y=-10.
So we are going to solve for x now.
9x-9y=0 where y=-10.
9x-9(-10)=0 where I plugged in -10 for y.
9x+90=0 where I simplified -9(-10) as +90.
9x =-90 where I subtracted 90 on both sides.
x= -10 where I divided both sides by 9.
The solution is (x,y)=(-10,-10)
Yeahhhhhhhhhhhhhhhhhhhhhh
Answer:
57.5°
Step-by-step explanation:
For triangle ABC C = 90 Side AC = 13.5 Side BC = 8.6 Find the measure of angle B
We solve using the Trigonometric function of Tangent
tan θ = Opposite/Adjacent
θ = Angle B
Opposite = Side AC 13.5
Adjacent = Side BC = 8.6
Hence:
tan θ = 13.5/8.6
θ = arc tan (13.5/8.6)
θ = 57.501354056°
Approximately = 57.5°
Therefore, Angle B = 57.5°