1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
9

A student on her way to school walks eastward in a straight line 20.0 meters towards the bus stop, but realizes she dropped her

physics notebook along the way and turns around to retrace her steps. She has traveled back 18.0 meters before finding it and then runs the remaining 45.0 meters due east to the bus stop. What is her total displacement? What is her total distance traveled?
Physics
1 answer:
larisa [96]3 years ago
3 0

Answer:

Total displacement will be 47 meter

Total distance will be 83 meters

Explanation:

We have given that first the student go eastward towards bus stop 20 meters

But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters

So displacement = 20-18 = 2 meters

And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters

Total distance traveled by the student = 20+18+45 = 83 meters  

You might be interested in
A force of 3600 N is exerted on a piston that has an area of 0.030 m2. What force is exerted on a second piston that has an area
Airida [17]
For Pascal's law, the pressure is transmitted with equal intensity to every part of the fluid:
p_1 = p_2
which becomes
\frac{F_1}{A_1}= \frac{F_2}{A_2}
where
F_1=3600 N is the force on the first piston
A_1=0.030 m^2 is the area of the first piston
F_2 is the force on the second piston
A_2=0.015 m^2 is the area of the second piston

If we rearrange the equation and we use these data, we can find the intensity of the force on the second piston:
F_2=F_1  \frac{A_2}{A_1}=(3600 N) \frac{0.015 m^2}{0.030 m^2}= 1800 N
7 0
3 years ago
Read 2 more answers
Imagine using brainly LOL COULDNT BE ME XD
Step2247 [10]

Answer:

LOL! couldnt be me either bestieeeee

7 0
3 years ago
Read 2 more answers
Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a
Wittaler [7]

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

8 0
3 years ago
Earth's gravitational force just got three times stronger! What happens to your weight?
kicyunya [14]

Your "weight" is the name you give to that gravitational force.
So your question actually says:

           "Your weight just got three times stronger !
             What happens to your weight ?"

8 0
3 years ago
What best describes a lens galaxy
Readme [11.4K]
<span>answer under the link: http: //briskrange.com/7gAl </span>
5 0
4 years ago
Read 2 more answers
Other questions:
  • Anyone get this if you do please help me step by step
    5·1 answer
  • How do the results of the rutherford experiment suggest that the nucleus is positively charged?
    9·1 answer
  • How much heat is released to freeze 47.30 grams of copper at its freezing point of 1,085°C? The latent heat of fusion of copper
    6·2 answers
  • How many joules of heat are absorbed to raise the temperature of 435 grams of water at 1 atm from 25°c to its boiling point?
    9·1 answer
  • How are forest fires beneficial to conifers like Jack Pines? a. Jack pine seeds are protected by forest fires. b. Pine cones are
    8·2 answers
  • It requires 350 joules to raise a certain amount of a substance from 10.0°C to 30.0°
    9·2 answers
  • A dust particle floats in front of a silent loudspeaker as shown in the figure. The loudspeaker is turned on and plays a constan
    8·2 answers
  • When you see an object that is not a light source, you are seeing light waves ___ by the object
    8·1 answer
  • Air, water and salt solution are given in the table.
    15·1 answer
  • 3. Two bullets have masses of 0.003 kg and 0.006 kg, respectively. Both are fired with a speed of 40.0 m/s.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!