Can you post a picture of the whole thing please
Answer:
Explanation:
The formula for the potential energy of a dipole placed in an electric field is given by
U = - pE Cos θ
where, θ is the angle between dipole moment and the electric field vector.
For θ = 0°,
initial potential energy, Ui = - pE
For θ = 180°,
final potential energy, Uf = - pE Cos 180 = pE
Change in potential energy
ΔU = Uf - Ui
ΔU = pE - (-pE)
ΔU = 2pE
We will have the following:
First, the equation to use is the following:

Now, we transform the total distance the cat would need to travel:

So, the cat would need to travel 1.5 meters. ("d" in the equation).
Now, using the speed given we determine the time it would take the cat to traverse the 1.5 meters:

So, the time it would take the cat to traverse the distance will be approximately 3.33 seconds.
Now, we know that the acceleration will be given by Earth's gravity, so:


So, the initial vvelocity the cat must leave the floor in order to arrive at the butterfly with the optimum pouncing speed of 0.45 m/s is approximately 16.78 m/s or exactly 1007/60 m/s.
Answer: 0.512 kgm²
Explanation:
Given
Force, F = 2*10^3 N
Angular acceleration, α = 121 rad/s²
Lever arm, r(⊥) = 3.1 cm = 3.1*10^-2 m
τ = r(⊥) * F
Also,
τ = Iα
Using the first equation, we have
τ = r(⊥) * F
τ = 0.031 * 2*10^3
τ = 62 Nm
Now we calculate for the inertia using the second equation
τ = Iα, making I subject of formula, we have
I = τ / α, on substituting, we have
I = 62 / 121
I = 0.512 kgm²
Thus, the moment of inertia of the boxers forearm is 0.512 kgm²
Answer:
25
Explanation:
magnitude and (b) direction (as an angle relative to the x axis) of the velocity