What causes the ballon to fly away is the air pushing out of the balloon also tied in with air pressure
115.35 ft
Set the proportion up 37.50/105.50 = 41/x and solve for x
Answer:
<u>Resolving</u><u> </u><u>horizontally</u><u>.</u> :

therefore, for resultant:

substitute:

The person's horizontal position is given by

and the time it takes for him to travel 56.6 m is

so your first computed time is the correct one.
The question requires a bit of careful reading, and I think there may be a mistake in the problem. The person's vertical velocity
at time
is

which tells us that he would reach the ground at about
. In this time, he would have traveled

But we're told that he is caught by a net at 56.6 m, which would mean that the net cannot have been placed at the same height from which he was launched. However, it's possible that the moment at which he was launched doesn't refer to the moment the cannon went off, but rather the moment at which the person left the muzzle of the cannon a fraction of a second after the cannon was set off. After this time, the person's initial vertical velocity
would have been a bit smaller than
.
Answer: A
Out of the screen
Explanation:
Using right hand rule, the magnetic force is perpendicular to the plane form by the magnetic field of a charged particle and its speed. Which will be into the screen.
But the negative charged particle moves in the opposite direction of the positive charged particle. Therefore, the magnetic force direction will be out of the screen