Answer:
High in the atmosphere, air pressure decreases. ... A low pressure system has lower pressure at its center than the areas around it. Winds blow towards the low pressure, and the air rises in the atmosphere where they meet. As the air rises, the water vapor within it condenses, forming clouds and often precipitation.
Explanation:
Answer:
The work is -67.76 J
Explanation:
The law of conservation of energy is considered one of one of the fundamental laws of physics and states that the total energy of an isolated system remains constant. except when it is transformed into other types of energy.
This is summed up in the principle that energy can neither be created nor destroyed in the universe, only transformed into other forms of energy.
In this case you must calculate the loss of kinetic energy. This loss is actually the work done against the resistive force in the air. Friction is the only force other than gravity that acts on the ball.
So, the loss of kinetic energy is 
You know:
- mass=m=0.22 kg
- Initial velocity of the ball:

Final velocity of the ball: 
Replacing:
= -67.76 J
Friction work is always negative because friction is always against displacement.
<u><em>The work is -67.76 J</em></u>
Answer: 500 Watts
Explanation:
Power
is the speed with which work
is done. Its unit is Watts (
), being
.
Power is mathematically expressed as:
(1)
Where
is the time during which work
is performed.
On the other hand, the Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path. It is a scalar magnitude, and its unit in the International System of Units is the Joule (like energy). Therefore, 1 Joule is the work done by a force of 1 Newton when moving an object, in the direction of the force, along 1 meter (
).
When the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(2)
In this case, we have the following data:



So, let's calculate the work done by Peter and then find how much power is involved:
From (2):
(3)
(4)
Substituting (4) in (1):
(5)
Finally: