Answer:
Step-by-step explanation:
Assuming Roberto wants to completely fill each page that he puts cards in, this function describes the number of 2-card pages, a, and 3-card pages, b.
2a + 3b =18
Ricardo can fill up 9 2-card pages, and 6 3-card pages.
a=9, b=0
We must add 2 3-card pages at a time,so that we have an even number for the 2-card pages:
a=6, b=2
Add 2 to b once more:
a=3, b=4
One more time:
a=0, b=6:
Thus, Ricardo can display his figures in the following page combinations:
a=9, b=0
a=6, b=2
a=3, b=4
a=0, b=6
Remember that a= number of 2-card pages and b=number of 3-card pages
There are 4 different ways that Ricardo can arrange his figures in terms of what kind of pages he uses.
Fill in each slot in the square with variables <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, and <em>e</em>, in order from left-to-right, top-to-bottom. In a magic square, the sums across rows, columns, and diagonals all add up to the same number called the <em>magic sum</em>.
The magic sum is -3.9, since "diagonal 2" (bottom left to top right) has all the information we need:
3 + (-1.3) + (-5.6) = -3.9
Use this to find the remaining elements
<em>a</em> + <em>b</em> + (-5.6) = -3.9
<em>c</em> + (-1.3) + <em>d</em> = -3.9
3 + <em>e</em> + 0.02 = -3.9
<em>a</em> + <em>c</em> + 3 = -3.9
<em>b</em> + (-1.3) + <em>e</em> = -3.9
(-5.6) + <em>d</em> + 0.02 = -3.9
- diagonal 1 (top left to bottom right):
<em>a</em> + (-1.3) + 0.02 = -3.9
You will find
<em>a</em> = -2.62
<em>b</em> = 4.32
<em>c</em> = -4.28
<em>d</em> = 1.68
<em>e</em> = -6.92
The answer to your question is 7a.
Answer:
35=35
Step-by-step explanation:
-(6m+7)-6(-7-m)=35
-6m-7-6(-7-m)=35
3. The leading coefficient of the function f(x)= 3x⁵+6x⁴-x-3 is 3.
For the function f(x)= 3x⁵+6x⁴-x-3 , the highest power of x is 5, so the degree is 5. The leading term is the term containing that degree, 3x⁵. The leading coefficient is the coefficient of that term, 3.