Answer:
Pre-zygotic, temporal separation
Explanation:
Reproductive isolation mechanism is of two types:
- Prezygotic mechanism
- Postzygotic mechanism
Prezygotic mechanism isolation occurs before fertilization and helpful in preventing formation of fertile offspring.
In frog external fertilization occurs. In the external fertilization, eggs and sperms are released in water and fertilization occur outside the water.
Prezygotic isolating mechanisms may include behavioral isolation, temporal isolation, mechanical isolation, gametic isolation and habitat isolation.
Temporal separation in reproduction is the sexual activity in the same geographical range but in different periods.
Therefore, the given reproductive isolation is pre-zygotic, temporal separation.
Please correct me if I'm wrong but I think the answer is b or c
also sorry if i do get it wrong
Heat flows from hot to cold on its own spontaneity. Temperature is used to measure how hot or cold an object is in relation to its reference point.
In a way, all of the answers could be argued for (for example: in the first option: if the scientists' opinions are understood to be "informed understanding of the causes of events"), but one of the options is the best:
Scientific laws describe specific relationships in nature without offering
an explanation.
The reason why I think this is true is that many laws are phased too short and too concise to provide comprehensive explanations, instead they describe the relationships that must hold.
One of the options is pplain false:
Scientific laws explain why natural events occur. -"Scientific laws were theories that have been tested, proven, and adopted as laws." - since they are not adopted as laws.
Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa