1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
6

What is the equation of a line that has a slope of 2, and contains the point (4,6)?

Mathematics
1 answer:
Tems11 [23]3 years ago
3 0

Answer:

y= 2x -2

Step-by-step explanation:

You would use point- slope formula. y-y = m(x-x). With your numbers it would end up looking like this ---->  y-6 = 2(x-4), then do the distributive property which then gives you ----> y-6 = 2x - 8, then subtract 6 on both sides and you get --->  y = 2x - 2. Hope this helped!!!!

You might be interested in
PLEASE HELP!!!
Aliun [14]

Answer:

a. 8.75 M NaOH

b. 0.425 M CuCl₂ or 0.43 M CuCl₂

c. 0.067 M CaCO₃ or 0.07 M CaCO₃

Step-by-step explanation:

Molality is computed using the formula:

M = \dfrac{Moles\:of\:solute}{Liters\:of\:solution}

So first thing you need to do is determine how many moles of solute there are and divide it by the solution in liters.

Converting mass to moles, you need to get the mass of each solute per mole. You can use the periodic table to get the atomic mass (which is the grams per mole of each atom) of each of the elements involved. Then add them up and you will have how many grams per mole of each compound.

1. 35.0g of NaOH in 100ml H₂O

Element         number of atoms            atomic mass           TOTAL

Na                              1                   x             22.99g/mol  =    22.99g/mol

O                                1                   x             16.00g/mol   =    16.00g/mol

H                                1                   x                1.01g/mol   =<u>       1.01g/mol</u>

                                                                                                 40.00g/mol

This means that the molecular mass of NaOH is 40.00 g/mol

Then we use this to convert 35.0g of NaOH to moles:

35.0g \:of\:NaOH \times \dfrac{1\:mole\:of\:NaOH}{40.00g\:of\:NaOH} = \dfrac{35.0\:moles\:of\:NaOH}{40.00}=0.875\:moles\:of\:NaOH

Now that you have the number of moles we divide it by the solution in liters. Before we can do that you have to conver 100ml to L.

100ml\times\dfrac{1L}{1000ml} = 0.1 L

Then we divide it:

\dfrac{0.875\:moles\:of\:NaOH}{0.1L of solution} = 8.75M\: NaOH

2. 20.0g CuCl₂ in 350ml H₂O

Element         number of atoms            atomic mass           TOTAL

Cu                              1                   x             63.55g/mol  =    63.55g/mol

Cl                               2                   x             34.45g/mol   =   <u>70.90g/mol</u>

                                                                                                134.45g/mol

20.g\:of\:CuCl_2\times\dfrac{1\:mole\:of\:CuCl_2}{134.45\:g\:of\:CuCl_2}=0.1488\:moles\:of\:CuCl_2

350ml = 0.350L

\dfrac{0.1488\:moles\:of\:CuCl_2}{0.350L\:of\:solution}=0.425M\:CuCl_2

3. 3.35g CaCO₃ in 500ml

Element         number of atoms            atomic mass           TOTAL

Ca                              1                   x             40.08g/mol  =    40.08g/mol

C                                1                   x              12.01g/mol   =    12.01g/mol

O                                3                  x              16.00g/mol   =<u>   48.00g/mol</u>

                                                                                                100.09g/mol

3.35g\:of\:CaCO_3\times\dfrac{1\:mole\:of\:CaCO_3}{100.09\:g\:of\:CaCO_3}=0.0335\:moles\:of\:CaCO_3

500ml = 0.5L

\dfrac{0.0335\:moles\:of\:CaCO_3}{0.5L}=0.067M\:CaCo_3

4 0
3 years ago
What is the length of AA' , rounded to the nearest hundredth? Type a numerical answer is the space provided. Do not type spaces
inna [77]
Coordinate of A are (0,0)
Coordinates of A' are (5,2)

We can find the distance from A to A' using the distance formula:

AA'= \sqrt{(5-0)^{2}+ (2-0)^{2}  } \\  \\ &#10;AA'= \sqrt{25+4} \\  \\ &#10;AA'= \sqrt{29} \\  \\ &#10;AA'=5.39

Thus, rounded to nearest hundredth, AA' is equal to 5.39
3 0
3 years ago
In the adjoining figure, XY = XZ . YQ and ZP are the bisectors of <img src="https://tex.z-dn.net/?f=%20%5Cangle" id="TexFormula1
svetlana [45]

Answer:

See Below.

Step-by-step explanation:

Statements:                                              Reasons:

1)\, XY=XZ                                              Given

2) \text{ $ m\angle Y= m\angle Z$}                                        Isosceles Triangle Theorem

\displaystyle 3) \text{ $m\angle Y=m\angle XYQ + \angle QYZ$}                  Angle Addition

\displaystyle 4)\text{ $YQ$ bisects $\angle XYZ$}                               Given

5) \text{ $m\angle XYQ=m\angle QYZ$}                           Definition of Bisector

\displaystyle 6)\text{ $m\angle Y=2m\angle QYZ$}                               Substitution

7)\text{ $m\angle Z=m\angle XZP+m\angle PZY$}              Angle Addition

8)\text{ $ZP$ bisects $\angle XZY$}                              Given

\displaystyle 9) \text{ $m\angle XZP=m\angle PZY$ }                          Definition of Bisector

\displaystyle 10) \text{ $ m\angle Z = 2m\angle PZY $}                            Substitution

11)\text{ } 2m\angle QYZ=2m\angle PZY                    Substitution

12)\text{ }m\angle QYZ=m\angle PZY                        Division Property of Equality

13)\text{ } YZ=YZ                                         Reflexive Property

14)\text{ } \Delta YZP\cong\Delta ZYQ                             Angle-Side-Angle Congruence*

15)\text{ } YQ=ZP                                         CPCTC

*For clarification:

∠Y = ∠Z

YZ = YZ (or ZY)

∠PZY = ∠QYZ

So, Angle-Side-Angle Congruence:

ΔYZP is congruent to ΔZYQ

5 0
3 years ago
Read 2 more answers
(08.07 HC)
andreev551 [17]

Answer:

\textsf{A)} \quad x=-2, \:\:x=\dfrac{5}{2}

\textsf{B)} \quad \left(\dfrac{1}{4},-\dfrac{81}{8}\right)=(0.25,-10.125)

C)  See attachment.

Step-by-step explanation:

Given function:

f(x)=2x^2-x-10

<h3><u>Part A</u></h3>

To factor a <u>quadratic</u> in the form  ax^2+bx+c<em> , </em>find two numbers that multiply to ac and sum to b :

\implies ac=2 \cdot -10=-20

\implies b=-1

Therefore, the two numbers are -5 and 4.

Rewrite b as the sum of these two numbers:

\implies f(x)=2x^2-5x+4x-10

Factor the first two terms and the last two terms separately:

\implies f(x)=x(2x-5)+2(2x-5)

Factor out the common term  (2x - 5):

\implies f(x)=(x+2)(2x-5)

The x-intercepts are when the curve crosses the x-axis, so when y = 0:

\implies (x+2)(2x-5)=0

Therefore:

\implies (x+2)=0 \implies x=-2

\implies (2x-5)=0 \implies x=\dfrac{5}{2}

So the x-intercepts are:

x=-2, \:\:x=\dfrac{5}{2}

<h3><u>Part B</u></h3>

The x-value of the vertex is:

\implies x=\dfrac{-b}{2a}

Therefore, the x-value of the vertex of the given function is:

\implies x=\dfrac{-(-1)}{2(2)}=\dfrac{1}{4}

To find the y-value of the vertex, substitute the found value of x into the function:

\implies f\left(\dfrac{1}{4}\right)=2\left(\dfrac{1}{4}\right)^2-\left(\dfrac{1}{4}\right)-10=-\dfrac{81}{8}

Therefore, the vertex of the function is:

\left(\dfrac{1}{4},-\dfrac{81}{8}\right)=(0.25,-10.125)

<h3><u>Part C</u></h3>

Plot the x-intercepts found in Part A.

Plot the vertex found in Part B.

As the <u>leading coefficient</u> of the function is positive, the parabola will open upwards.  This is confirmed as the vertex is a minimum point.

The axis of symmetry is the <u>x-value</u> of the <u>vertex</u>.  Draw a line at x = ¹/₄ and use this to ensure the drawing of the parabola is <u>symmetrical</u>.

Draw a upwards opening parabola that has a minimum point at the vertex and that passes through the x-intercepts (see attachment).

5 0
2 years ago
A T-shirt launcher can launch 105 shirts in 20 minutes. What is the rate in shirts per hour?
Margarita [4]

The T-shirt launcher can launch 315 shirts per hour.

4 0
4 years ago
Read 2 more answers
Other questions:
  • Show me the work and answer please
    7·1 answer
  • Solve 4 over x minus 4 equals the quantity of x over x minus 4, minus four thirds for x and determine if the solution is extrane
    13·1 answer
  • Find the zeros of the function and 2x² + 72=0
    10·1 answer
  • Two cars started from the same point. one traveled north at 45 mi/h and the other traveled south at 65 mi/h. how far apart were
    5·1 answer
  • LEAST TO GREATEST PLSSS
    14·1 answer
  • Tìm x,y thỏa mãn: x^2-2xy+3y-5x+7=0
    8·1 answer
  • PLEASE HELP IM TIMED
    15·2 answers
  • How do i simplify this problem, for geometry. specifically ALEKS 3(x+5)-5x
    6·1 answer
  • Use suitable identity and find the product of:<br> (2a-7)(2a-7)
    13·2 answers
  • Abcd is a trapizium calculate the area of the area of abcd 10 9 7 15
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!