Total resistance= 7.75+15.5+21.7=44.95
Current = 15V/44.95=0.334A
        
             
        
        
        
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
 
        
             
        
        
        
Answer:
Given: V = 220V, Pmin = 360W, Pmax = 840W
For minimum heating case:
We know that
Pmin = VI
360 = 220 X I
I = 1.63 amp
R = V/I
R = 220/1.63
R = 134.96ohms
For maximum heating case:
We know that
Pmax = VI
840 = 220 X I
I = 3.81 amp
R = V/I
R = 220/3.81
R = 57.74 ohms
 
        
             
        
        
        
Mass doesn't depend on where it is, and doesn't change.