Answer:
a)Amplitude ,A = 2 mm
b)f=95.49 Hz
c)V= 30 m/s ( + x direction )
d) λ = 0.31 m
e)Umax= 1.2 m/s
Explanation:
Given that
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
As we know that standard form of wave equation given as

A= Amplitude
ω=Frequency (rad /s)
t=Time
Φ = Phase difference
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
So from above equation we can say that
Amplitude ,A = 2 mm
Frequency ,ω= 600 rad/s (2πf=ω)
ω= 2πf
f= ω /2π
f= 300/π = 95.49 Hz
K= 20 rad/m
So velocity,V
V= ω /K
V= 600 /20 = 30 m/s ( + x direction )
V = f λ
30 = 95.49 x λ
λ = 0.31 m
We know that speed is the rate of displacement

![U=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=U%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
![U=1200\ cos[(20m^{-1})x-(600s^{-1})t]\ mm/s](https://tex.z-dn.net/?f=U%3D1200%5C%20cos%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D%5C%20mm%2Fs)
The maximum velocity
Umax = 1200 mm/s
Umax= 1.2 m/s
There are many factors which contributes as to how a machine will be processing the input energy and convert it to output energy. Even with identical mechanism, these factors will have major effect on the output. Some factors are deflection, friction and wear. Some system maybe exposed to poor lubrication than the other which'll produce more friction and wear thus lower mechanical advantage.
The longer you spend reading and thinking about this question,
the more defective it appears.
-- In each case, the amount of work done is determined by the strength
of
the force AND by the distance the skateboard rolls <em><u>while you're still
</u></em>
<em><u>applying the force</u>. </em>Without some more or different information, the total
distance the skateboard rolls may or may not tell how much work was done
to it.<em>
</em>
-- We know that the forces are equal, but we don't know anything about
how far each one rolled <em>while the force continued</em>. All we know is that
one force must have been removed.
-- If one skateboard moves a few feet and comes to a stop, then you
must have stopped pushing it at some time before it stopped, otherwise
it would have kept going.
-- How far did that one roll while you were still pushing it ?
-- Did you also stop pushing the other skateboard at some point, or
did you stick with that one?
-- Did each skateboard both roll the same distance while you continued pushing it ?
I don't think we know enough about the experimental set-up and methods
to decide which skateboard had more work done to it.
Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
Randall has unconscious assumption that attractive people are more competent