The stronger the forces, the more rigid the matter. Pure Substances are made of the same material throughout and have the same properties throughout. Pure substances cannot be separated into other substances. Some examples are carbon, iron, water, sugar, salt, nitrogen gas, and oxygen gas.
The density of the substance is<u> 10.5 g/cm³.</u>
The jewelry is made out of <u>Silver.</u>
Density ρ is defined as the ratio of mass <em>m</em> of the substance to its volume V<em>. </em> The cylinder contains a volume <em>V₁ of water</em> and when the jewelry is immersed in it, the total volume of water and the jewelry is found to be V₂.
The volume <em>V</em> of the jewelry is given by,

Substitute 48.6 ml for <em>V₁ </em>and 61.2 ml for V₂.

calculate the density ρ of the jewelry using the expression,

Substitute 132.6 g for <em>m</em> and 12.6 ml for <em>V</em>.

Since
,
The density of the jewelry is <u> 10.5 g/cm³.</u>
From standard tables, it can be seen that the substance used to make the jewelry is <u>silver</u><em><u>, </u></em>which has a density 10.5 g/cm³.
Answer:
In parallel combination each appliance gets the full voltage.
If one appliance is switched on/of others are not affected.
The parallel circuit divide the current through the appliances.
In a parallel combination it is very easy to connect or disconnect a new appliance without affecting the working of other appliances.
pls mark me as brainlist
Explanation:
Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.