1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
3 years ago
13

The illustration above depicts a string being stretched and then released. Changes in both potential and kinetic energy occur du

ring this process. Which statement most accurately describes the changes in potential or kinetic energy?
A) the kinetic energy is continually increasing throughout the entire process
B) the potential energy is continually increasing throughout the entire process
C) the potential energy is increasing through steps A, B, & C and then decreases
D) the potential energy is decreasing through steps A, B, & C and then increases
Chemistry
2 answers:
kati45 [8]3 years ago
6 0

Answer:

The answer is C

Explanation:

The potential energy is increasing through steps A & B, then decreases at C.

9966 [12]3 years ago
4 0
Did u ever get the answer
You might be interested in
Put the list in chronological order (1-5).
iVinArrow [24]

Answer:

what list???

Explanation:

7 0
4 years ago
Read 2 more answers
In stars, What atom is used with hygrogen atom in order to produce energy?
ch4aika [34]
In stars helium atoms are used with hydrogen atoms in order to produce energy.
Answer: A ) 
7 0
3 years ago
an electron in the 3rd shell of an Aluminium atom moves to the first shell in a bombardment process. Calculate the frequency of
Liula [17]

Following the quantic theory, the energy of a photon equals the radiation frequency multiplied by the universal constant. ν = 2.923x10¹⁵ Hz. E = 3.09x10¹⁵Hz.

<h3>What is quantum mechanic?</h3>

It is the branch of physics that studies objects and forces at a very low scale, at atoms, subatoms, and particles levels.

Quantum mechanics states that the elemental particles that constitute matter -electrons, neutrons, protons- have the properties of a wave and a particle.

It emerges from the quantic theory exposed by Max Planck (1922), in which he affirmed that light propagates in energy packages or photons.

He discovered the Universal Planck constant, h, used to calculate the energy of a photon.

He stated that the energy of a photon (E) equals the radiation frequency (ν) multiplied by the universal constant (h).

E = νh

In the exposed example, we need to calculate the energy required to change from the 3rd shell to the first shell.

To do it, we should know that the energy in a level (Eₙ) equals the energy associated to an electron in the most inferior energy level (E₁) divided by the square of the shell number (n²).

Eₙ = E₁ / n²

E₁ is a constant. We can express it in <em>Joules </em>or <em>electroVolts </em>

  • E₁ = -2.18x10⁻¹⁸ J
  • E₁ = -13.6 eV

So, let us calculate the energy at level 1 and 3

Eₙ = E₁ / n²

  • E₁ =  -2.18x10⁻¹⁸ J / 1² =<u>  -2.18x10⁻¹⁸</u><u> J</u>

        E₁ =  -13.6 eV / 1² =<u>  -13.6 </u><u>eV</u>

  • E₃ =  -2.18x10⁻¹⁸ J / 3² =  -2.18x10⁻¹⁸ J / 9 =<u> - 2.42x10⁻¹⁹ </u><u>J</u>

        E₃ =  -13.6 eV / 3² =  -13.6 eV / 9 = <u>- 1.51 </u><u>eV</u>

The change of energy can be calculated in two ways,

<u>Option 1</u>

ΔE = E₁ - E₃ = 2.18x10⁻¹⁸ - 2.42x10⁻¹⁹ =<u> 1.93x10⁻¹⁸</u><u>J</u>

ΔE = E₁ - E₃ = 13.6 - 1.51 = <u>12.09 </u><u>eV</u>

<u>Option 2</u>

ΔE = -2.18x10⁻¹⁸ J (1/nf² - 1/ni²)

ΔE =-13.6 eV (1/nf² - 1/ni²)

Where nf is the final level and ni is the initial level. When the electron passes from its initial level to its final level it is called electronic transition.

  • ni = 3
  • nf = 1

ΔE = -2.18x10⁻¹⁸ J (1/nf² - 1/ni²)

ΔE = -2.18x10⁻¹⁸ J (1/1² - 1/3²)

ΔE = -2.18x10⁻¹⁸ J (1 - 0.111)

ΔE = -2.18x10⁻¹⁸ J (0.888)

<u>ΔE</u><u> = - 1.937x10⁻¹⁸ </u><u>J</u>

or

ΔE = -13.6 eV  (1/nf² - 1/ni²)

ΔE = -13.6 eV  (1/1² - 1/3²)

ΔE = -13.6 eV  (1 - 0.111)

ΔE = -13.6 eV  (0.888)

<u>ΔE</u><u> = -12.08</u><u> eV</u>

This is the energy required for the electron to go from n= 3 to n = 1. The negative sign (-) means energy (as light or photons) released or emitted.

<u />

If we want to express the result in Hz, we just need to make a conversion.

1Hz ⇔ 6.626x10⁻³⁴J ⇔ 4.136x10¹⁵ eV.

The energy required for the electron to go from n= 3 to n = 1 is <u>3.09x10¹⁵ </u><u>Hz</u><u>.</u>

Now, we need to calculate the frequency, ν. This is, how many times the wave oscillates back and foward per second.

To do it, we will use the universal Planck constant, h, and the absolute value of the energy, E.

ν = E/h = 1.937x10⁻¹⁸ J / 6.626x10⁻³⁴ Js = 2.923x10¹⁵ 1/s =  <u>2.923x10¹⁵ Hz</u>.

<u>Answer</u>:

  • Frequency, ν = E/h = <u>2.923x10¹⁵ </u><u>Hz</u>.
  • Energy, E = <u>3.09x10¹⁵ </u><u>Hz</u><u>.</u>

You can learn more about quantum mechanic at

brainly.com/question/11855107

brainly.com/question/23780112

brainly.com/question/11852353

5 0
2 years ago
What is the pH of soil ?​
Vesna [10]

Answer:

Most soils have pH values between 3.5 and 10. In higher rainfall areas the natural pH of soils typically ranges from 5 to 7, while in drier areas the range is 6.5 to 9. Soils can be classified according to their pH value: 6.5 to 7.5—neutral

Explanation:

hope this helps if not let me know have a great day

3 0
2 years ago
Why did the big bang not produce a significant proportion of elements heavier than helium?
Travka [436]

The big bang did not produce a significant proportion of elements heavier than helium because the temperatures and densities present in the early universe were not sufficient to support the fusion of heavier elements.

During the first few minute of the big bang, the universe was composed of mostly hydrogen and helium, with very small amounts of lithium and beryllium. As the universe expanded and cooled, the denser regions of the universe collapsed to form the first stars. Inside these stars, the intense pressure and heat generated by nuclear fusion reactions allowed for the production of heavier elements, such as carbon and oxygen. However, elements heavier than helium, such as iron and nickel, require even higher temperatures and densities to be produced, which can only be found in the cores of supernovae. Therefore, the big bang alone did not produce a significant proportion of elements heavier than helium.

to know more about compounds-

brainly.com/question/12166462

#SPJ4

7 0
1 year ago
Other questions:
  • If a sealed syringe is plunged into cold water, in which direction will the syringe piston slide?
    9·1 answer
  • PLZ HELP GOD PLZ HELP ME PLZ AWNSER 11. AND 14.
    5·1 answer
  • What are the molality and mole fraction of solute in a 35.9 percent by mass aqueous solution of formic acid (HCOOH)?
    13·1 answer
  • When the excited electron in a hydrogen atom falls from to , a photon of blue light is emitted. If an excited electron in falls
    10·1 answer
  • BRAINLIEST
    6·1 answer
  • What is the chemical formula and net ionic equations for all three solutions.
    6·1 answer
  • Why can more sugar be dissolved in hot water than cold water (more solute be dissolved in hot solvent then cold solvent)
    7·1 answer
  • What is the molecular formula of sodium hydroxide??​
    15·2 answers
  • Determing Valence Electrons
    14·1 answer
  • How do scientists determine the age of rocks found on Earth?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!