Answer:
The MO method for N2+ gives the bond order equal to 2.5. But first, we look at the diagram of molecular orbitals for N2 (the bond order for the nitrogen molecule is 3). the N2+ molecule). That is, the bond order for N2+ is 2.5.
Answer : The
must be administered.
Solution :
As we are given that a vial containing radioactive selenium-75 has an activity of
.
As, 3.0 mCi radioactive selenium-75 present in 1 ml
So, 2.6 mCi radioactive selenium-75 present in 
Conversion :

Therefore, the
must be administered.
It’s charge was neutral due to the equal number of protons and electrons. when it becomes an ion it loses 3 electrons leaving behind only 10. the answer is 10. the equation is +13 +(-10)=+3
The nonpolar end of a soap molecule attaches itself to grease.
Hey there!
<span>Atomic Masses :
</span>
H = <span>1.00794 a.m.u
N = </span><span>14.0067 a.m.u
O = </span><span>15.9994 a.m.u
Therefore:
HNO3 = </span>1.00794 + 14.0067 + ( 15.9994 * 3 ) => <span>63.0128 g/mol</span>