If I am correct the answer would be iron and nickel.
Answer:
Kindly check the explanation section.
Explanation:
From the description given in the question above, that is '' H subscript f to the power of degree of the reaction" we have that the description matches what is known as the heat of formation of the reaction, ∆fH° where the 'f' is a subscript.
In order to determine the heat of formation of any of the species in the reaction, the heat of formation of the other species must be known and the value for the heat of reaction, ∆H(rxn) must also be known. Thus, heat of formation can be calculated by using the formula below;
∆H(rxn) = ∆fH°( products) - ∆fH°(reactants).
That is the heat of formation of products minus the heat of formation of the reaction g specie(s).
Say heat of formation for the species is known as N(g) = 472.435kj/mol, O(g) = 0kj/mol and NO = unknown, ∆H°(rxn) = −382.185 kj/mol.
−382.185 = x - 472.435kj/mol = 90.25 kJ/mol
Given data: <span>molar mass = 180.2 g/mol in 920.0 ml of water at 25 °c.
</span><span>the vapor pressure of pure water at 25 °c is 23.76 mm hg.
</span>Asked: <span>the vapor pressure of a solution made by dissolving 109 grams of glucose
</span><span>
Solution:
moles glucose = 109 g/ 180.2 g/mol=0.605
mass water = 920 mL x 1 g/mL = 920 g
moles water = 920 g/ 18.02 g/mol=51.1
mole fraction water = 51.1 / 51.1 + 0.605 =0.988
vapor pressure solution = 0.988 x 23.76 = 23.47 mm Hg</span>
2 moles of Na3PO4 form from 6.0 mol NaOH. Details about stoichiometry can be found below.
<h3>How to calculate number of moles?</h3>
The number of moles of a substance can be calculated stoichiometrically as follows:
3NaOH + H3PO4 → 3H₂O + Na3PO4
According to this equation,
3 moles of NaOH produces 1 mole of Na3PO4
This means that 6 moles of NaOH will produce 6/3 = 2 moles of Na3PO4
Therefore, 2 moles of Na3PO4 form from 6.0 mol NaOH.
Learn more about stoichiometry at: brainly.com/question/9743981
#SPJ1
Answer:

Explanation:
We can use the Ideal Gas Law — pV = nRT
Data:
V = 66.8 L
m = 77.8 g
T = 25 °C
Calculations:
(a) Moles of N₂

(b) Convert the temperature to kelvins
T = (25 + 273.15) K = 298.15 K
(c) Calculate the pressure
