To determine a planet's mass, astronomers typically measure the minuscule movement of the star caused by the gravitational tug of an orbiting planet. For planets the massof Earth detecting such a tiny tug is extraordinarily challenging with current technology
Answer: There are 0.006 moles of acid in the flask.
Explanation:
Given:
= 21.35 mL,
= 0.150 M
= 25.0 mL,
= ?
Formula used to calculate molarity of
is as follows.

Substitute the values into above formula as follows.

As molarity is the number of moles of a substance present in a liter of solution.
Total volume of solution = 
= 21.35 mL + 25.0 mL
= 46.36 mL (1 mL = 0.001 L)
= 0.04636 L
Therefore, moles of acid required are calculated as follows.

Thus, we can conclude that there are 0.006 moles of acid in the flask.
Answer:
Total pressure of the mixture is 12.2 atm
Explanation:
Let's apply the Ideal Gases law to solve this
Total pressure . V = Total moles . R . T
Total moles = 0.4 m of He and 0.6 mole of Ne → 1 mol
P . 2L = 1 mol . 0.082 L.atm/mol. K . 298K
P = ( 1 mol . 0.082 L.atm/mol. K . 298K) /2L
P = 12.2 atm
Answer:
A) solute - NaCl, solvent - water
B) solute - O2 and other gases, solvent - N2
C) solute - ethanol, solvent - water
D) solute - tin, solvent - copper
Explanation:
Solute(s) is/are the minor component(s) in a solution, dissolved in the solvent.
Solvent is the component of a solution that is present in the greatest amount. It is the substance in which the solute is dissolved.
If both solute and solvent exist in equal quantities (such as in a 50% ethanol, 50% water solution), the concepts of "solute" and "solvent" become less relevant, but the substance that is more often used as a solvent is normally designated as the solvent (in this example, water).
Answer:0.477 g/ml
Explanation:
Density=(40.14-33.79)/13.3 ml
Density=6.35/13.3
Density=0.477 g/ml