Answer: 5.66 dm3
Explanation:
Given that:
Volume of neon gas = ?
Temperature T = 35°C
Convert Celsius to Kelvin
(35°C + 273 = 308K)
Pressure P = 0.37 atm
Number of moles N = 0.83 moles
Note that Molar gas constant R is a constant with a value of 0.0082 ATM dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
0.37atm x V = 0.83 moles x 0.0082 atm dm3 K-1 mol-1 x 308K
0.37 atm x V = 2.096 atm dm3
V = (2.096 atm dm3 / 0.37atm)
V = 5.66 dm3
Thus, the volume of the neon gas is 5.66 dm3
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
About 7-8 years More. The real answer would be 7.14285714286